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FRAMEWORK

Figure 4.8: VIFF benchmarking: Multiplying random 65-bit numbers in parallel
and in serial.

details on VIFF benchmarks see [rGiN09], [Gei08a], [Gei09] and [Gei08c].
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Chapter 5
RSA

Figure 5.1: Comic strip from xkcd regarding RSA security ([XKC09]).

This chapter will present public-key encryption in general before describing
the RSA scheme. Both the standard RSA scheme and a distributed RSA
scheme will be described.

5.1 Public-key Encryption

Public-key encryption (also known as asymmetric encryption) is a form of
cryptosystem that uses different keys for the encryption and decryption pro-
cedures, one public key (PU), which is known by all, and one private key
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40 CHAPTER 5. RSA

(PR), which is only known by the one generating it. One of the keys is
used along with an encryption algorithm to transform a plaintext into a
ciphertext, while the paired key used along with a decryption algorithm re-
covers the plaintext from the ciphertext again. Public-key encryption can
be used for confidentiality1 (encryption), authentication2 (digital signature),
or both.

The opposite of public-key encryption is secret-key encryption (also known
as symmetric encryption) where the same key is used for both encryption
and decryption.

Figure 5.2 shows how public-key encryption is conducted when Alice wants
to send a message to Bob in such a way that only Bob can read the message.

Figure 5.2: Public-key encryption: Alice sends a confidential (encrypted) message
to Bob using Bob’s public key, PUb. Bob is the only one with the paired key, PRb,
and therefore the only one who can decrypt and read the message.

First Alice downloads Bob’s public key (PUb) which is publicly available.
Alice then inputs the message M and Bob’s public key to the encryption
algorithm and sends the output from the encryption (ciphertext C) to Bob.
Once M is encrypted with Bob’s public key, only the paired key (Bob’s
private key, PRb) can obtain M again. This is done by Bob inputting the
ciphertext C and his private key to the decryption algorithm which outputs
M for Bob to read.

Figure 5.3 shows how public-key encryption is conducted when Bob wants
to authenticate that a message actually is sent by him (referred to as signing
a message). Notice that in this figure, the arrows are from Bob, while in
Figure 5.2 they are towards Bob. This is because now the authentication
is the important property, Bob wants to prove that he actually sent the

1Confidentiality: Protection of data from unauthorized disclosure ([Sta06]).
2Authentication: Assurance that the communicating entity is the one that it claims to

be ([Sta06]).
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message, but the message is not secret. The procedure is as follows: Bob
uses his private key to encrypt a message M and sends it to Alice, which
in turn uses Bob’s public key to assure herself that this message actually is
from Bob. Anyone who obtains the ciphertext C sent from Bob can decrypt
it by using Bob’s public key.

Figure 5.3: Public-key encryption: Bob sends an authenticated (signed) message
to Alice by using his private key, PRb to encrypt a message M into the ciphertext
C. Alice receives C and uses Bob’s public key, PUb to decrypt the ciphertext C
into the message M .

Notice that if Bob wants to send a confidential and authenticated message
to Alice, he first needs to sign the message using his own private key and
the message M as input to the encryption algorithm, obtaining C1. Next,
inputting this C1 along with Alice’s public key to the encryption algorithm,
results in C2, which he sends to Alice. Alice would now need to use her
own private key and C2 as input to the decryption algorithm to obtain C1.
Lastly, Alice inputs C1 and Bob’s public key to the decryption algorithm
and obtains the message M . A figure for this scheme is omitted here.

A common misconception about public-key schemes is that one pair of keys
is enough to send messages back and forth between two or more players. But
as can be seen in Figure 5.2 and 5.3 this would only yield confidentiality one
way and authentication the other way. Therefore, each player needs a own
key pair in order to be able to maintain both confidentiality and authenti-
cation both ways.

Well-known public-key algorithms include RSA ([RSA78]), Diffie-Hellman
key exchange ([DH76]) and ElGamal encryption system ([EG85]), where
RSA is based on the difficulty of factoring large numbers, whereas both
Diffie-Hellman and ElGamal relies on the difficulty of computing discrete
logarithms.

41



42 CHAPTER 5. RSA

5.2 RSA Scheme

RSA was developed by Ron Rivest, Adi Shamir and Leonard Adleman at
Massachusetts Institute of Technology (MIT) in 1977 and published in 1978
in the article [RSA78]. Since then, it has become the most widely used
general-purpose algorithm for public-key encryption. The security of RSA
relies on the difficulty of factoring large numbers, more specifically the fac-
toring of the public modulus N .

The RSA algorithm consists of four separate parts, namely: key generation,
encryption, decryption and signature, all described in full detail below.

Key generation:
Select p, q p and q are both prime, p 6= q
Calculate N = p · q
Calculate ϕ(N) = (p− 1)(q − 1)
Select an integer e gcd(ϕ(N), e) = 1, 1 < e < ϕ(N)
Calculate d d ≡ e−1 (mod ϕ(N))
Public key PU = {e, N}
Private key PR = {d, N}

Encryption:
Plaintext M < N
Ciphertext C = M e mod N

Decryption:
Ciphertext C
Plaintext M = Cd mod N

Signature:
Plaintext M < N
Ciphertext C = Md mod N
Verification M = Ce mod N

The protocol for key generation must be done first. It starts by finding two
distinct prime numbers p and q. From p and q, N and ϕ(N) are calculated
as N = p · q and ϕ(N) = (p − 1) · (q − 1) where ϕ(N) is the Euler totient
function3. Next, an integer e is selected such that the greatest common di-
visor (gcd) of ϕ(N) and e is equal to 1, and e is a number larger than 1 but
less than ϕ(N). The reason why e is selected with these restrictions is that

3Euler’s totient function ϕ(N) is defined to be the number of positive integers less than
N and relatively prime to N . This means that if p is prime, then ϕ(p) = p−1 by definition
of prime numbers. It can also be shown that if p and q are distinct primes, with N = p · q,
then ϕ(N) = ϕ(pq) = ϕ(p) · ϕ(q) = (p− 1) · (q − 1) ([Fra03]).

42



5.2. RSA SCHEME 43

there must exist an inverse to e mod ϕ(N). Such an inverse can be found by
using the Extended Euclidean Algorithm (see [CLRS01], [Ros03] or [TW06])
if and only if gcd(ϕ(N), e) = 1. Lastly, the inverse d ≡ e−1 mod ϕ(N) is
calculated, yielding the public key PU = {e, N} and the private key PR =
{d, N}. The size of a RSA key is the length of the modulus N in bits, mean-
ing that p and q preferably are approximately half the key size in length each.

Encryption and decryption are closely related, and encryption must be con-
ducted first. Say Alice wants to send a message M to Bob such that no
other person than Bob can read the message as shown in Figure 5.2. Alice
downloads Bob’s public key {e, N} and calculate the ciphertext as C = M e

mod N , before sending C to Bob. Notice if M is larger than N , Alice needs
to break the message into smaller pieces before encrypting it, M1,M2 . . .,
where each Mi < N , resulting in C1, C2 . . ..

When Bob receives C from Alice, he can use his private key {d, N} to obtain
the plaintext M . This is done by Bob calculating M = Cd mod N . It can
easily be seen that this protocol is correct:

C = M e mod N
M = Cd mod N = (M e)d mod N = M ed mod N

Since d is the inverse of e (mod N), this means that ed ≡ 1 mod N , which
in turn makes the last expression equal to M1 mod N = M .

The signature protocol is very similar to encryption and decryption, the only
difference is that the private key is used for encryption and the public key
is used for decryption, the opposite of how the keys are used in standard
encryption and decryption. An example with actual values for encryption
and decryption are included in Example 6 below.

Example 6. (RSA encryption/decryption) Bob has generated a valid
RSA key as explained above obtaining the values:

p = 19
q = 23
N = p · q = 437
ϕ(N) = (p− 1) · (q − 1) = 396
e = 17
d = e−1 mod 396 = 233

This means that the Bob’s private and public keys are {233, 437} and
{17, 437}, respectively. Alice wants to send a message M = 2 to Bob.
She encrypts the message using Bob’s public key to obtain the ciphertext
C:

C = M e mod N = 217 mod 437 = 409
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Alice then sends C to Bob, which uses his private key to obtain the message
M :

M = Cd mod N = 409233 mod 437 = 2

Bob yields the message M = 2, which is correct. Signature is very similar,
as explained earlier, therefore an example is omitted here.

5.3 Distributed RSA scheme

The difference between a standard RSA protocol and a distributed RSA
protocol is that no single player can have complete knowledge of the private
key, meaning that the private key needs to be secret shared among all the
players. Distributed RSA can be performed in a number of different ways,
although the method which has gained most acceptance is the one proposed
by Dan Boneh and Matthew Franklin in their article Efficient Generation
of Shared RSA keys ([BF97]), and in the updated and more detailed version
Experimenting with Shared Generation of RSA keys ([MWB99]) by Michael
Malkin, Thomas Wu and Dan Boneh. This method is the current milestone
for generating distributed RSA keys, and will be described here. The gener-
ation of distributed RSA keys using this method consists of 4 steps: Picking
candidates, trial division on N, distributed biprimality test and calculate ex-
ponents, shown in Figure 5.4. These steps, in addition to how to perform
distributed decryption and distributed signature are all described in detail
in the following.

5.3.1 Pick Candidates

This step is where candidates for p and q are chosen, but since the character
p is also used as the order of the finite field, q will be used here for the can-
didates. Each player i picks a secret integer qi and keeps it secret. For the
protocol to work, N needs to be a Blum integer4, therefore player 1 picks a
random q1 which is congruent to 3 mod 4, while the rest of the players picks
qi’s which are congruent to 0 mod 4, such that the total q = q1 + q2 + ...+ qk
(where k is the number of players), is congruent to 3 mod 4, making N a
Blum integer.

Next, the parties performs distributed trial division to determine that q =
q1 + q2 + ...+ qk is not divisible by any small prime less than a boundary B1
by using MPC. The distributed trial division is conducted as follow: Let q
be as defined above, and let l be a small prime. To test if l divides q each
player picks a random ri ∈ Zp. Next, the players compute

4N is a Blum integer if N = p · q where p and q are distinct prime numbers congruent
to 3 mod 4. That is, p and q must be of the form 4t+ 3, for some integer t ([Con09a]).
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Figure 5.4: The distributed RSA protocol consists of 4 steps: Picking candidates,
trial division on N, distributed biprimality test and calculate exponents. The pro-
tocol can fail at any of the 3 first steps, which means that new candidates must be
picked.

qr =
( k∑
i=1

qi

)( k∑
i=1

ri

)
mod l

If qr 6= 0, then l does not divide q. By using this method a bad candidate
is always rejected, but a good candidate can also be rejected if l divides
r = r1 + r2 + ... + rk. To decrease the probability of discarding a good
candidate, do the test with two different picked r for each l such that r1 =
r11 + r12 + ...+ r1k and r2 = r21 + r22 + ...+ r2k, and therefore computing

qr1 =
( k∑
i=1

qi

)( k∑
i=1

r1i

)
mod l

qr2 =
( k∑
i=1

qi

)( k∑
i=1

r2i

)
mod l

The test for l is passed if at least one of the values is different from zero,
that is if qr1+qr2 6= 0. If the test is passed, then set l to the next prime and
redo the test until the boundary B1 is reached. If the test fails at any of the
l’s, then a new q needs to be picked as described above. If B1 is reached,
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then q has passed the distributed trial division, and the other prime q is
picked and tested in the same manner.

5.3.2 Trial Division on N

When both the candidates p and q have passed the distributed trial division,
an MPC is conducted to compute N = (p1 +p2 + ...+pk) · (q1 +q2 + ...+qk),
which is revealed to all players. As N is the product of two large candidate
primes p and q, it should not be divisible by any other primes. The players
therefore do a more comprehensive trial division on the revealed N locally
to check that N is not divisible by any small prime in the range [B1, B2] for
some boundary B2 (typically much larger than B1). If it turns out that N
is indeed divisible by a small prime up to B2, this test is declared a failure
and the whole key generation protocol restarts by the players picking new
values for the candidates p and q.

5.3.3 Distributed Biprimality Test

After the two trial division tests already conducted, it is clear that N is not
divisible by any small prime numbers up to the boundary B2. The next
test is a distributed test and also a probabilistic test since it’s infeasible to
check all prime number up to the square root5 of p and q to be absolutely
sure that p and q actually are prime numbers.

The distributed biprimality test consists of 4 steps (for proof of the correct-
ness of the protocol the reader is referred to [BF97] due to the length of the
proof).

Step 1: The players agree on a random g ∈ Z∗N .6 This can be done by
one of the players picking a random g and revealing it to all the other
players.

Step 2: The players compute the Jacobi symbol7 g over N . If ( gN ) 6= 1 the
protocol is restarted at step 1 by choosing a new g.

Step 3: Otherwise, the players computes v = gϕ(n)/4 mod N as an MPC.
Note that ϕ(n) = (p − 1)(q − 1) = N − p − q + 1, therefore player 1
computes v1 = g(N−p1−q1+1)/4 mod N . The rest of the players compute
vi = g−(pi+qi)/4 mod N . Next, all players secret share their values of

5If n is a composite integer, then n has a prime divisor less than or equal to
√
n.

([Ros03]).
6Z∗N is the set of nonzero members of ZN ([Fra03]).
7The Jacobi symbol is a generalization of the Legendre symbol ([Con09c]) and defined

as follows: For any integer a and any positive odd integer n the Jacobi symbol is defined
as the product of the Legendre symbols corresponding to the prime factors of n:

(
a
n

)
=(

a
p1

)α1( a
p2

)α2
. . .
(
a
pk

)αk where n = pα1
1 p

α2
2 . . . p

αk
k ([Con09b]).
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vi such that v can be calculated and revealed, v =
k∏
i=1

vi mod N . Once

v is revealed, the players check if:

v =
k∏
i=1

vi
?= ±1 mod N

If the test fails the parties declare that N is not a product of two
distinct primes, and the protocol is restarted from the beginning by
picking new values for p and q.

Step 4: There are two ways of implementing step 4, and only the alter-
native step is shown here. This alternative step requires very little
calculations, although there is a bit more communication between the
players. The step tests if gcd(N, p + q − 1) > 1. The players cannot
reveal their private pi and qi, therefore each player picks a random
number ri ∈ ZN and keeps it secret. Then they do an MPC by calcu-
lating z such that p and q are not revealed:

z =
( k∑
i=1

ri

)
·
(
− 1 +

k∑
i=1

(pi + qi)
)
mod N

Next, z is revealed, and the players check if gcd(z,N) > 1. If so, N is
rejected, and the protocol is restarted from the beginning by picking
new values for p and q. If N is actually a product of two distinct prime
numbers, it will pass this test with overwhelmingly high probability.
If N passes this test, then N is declared to be the product of two
distinct primes, and the calculation of the public and private exponent
can start.

5.3.4 Calculate Exponents

When p and q have been found and N has been calculated, the next step
is to find e and d that form the public key and private key respectively to-
gether with N . There are two options regarding the public exponent e, it
can be set to a standard (small) RSA exponent such that no calculations are
required, or it can be calculated, and therefore vary from key to key. In this
description, only the static e approach is outlined, which can use a chosen
e less than approximately 220 ([MWB99]). In the following, it’s given that
ϕ = ϕ(N). Since e is an RSA exponent, it is given that gcd(e, ϕ) = 1.

The calculation of d =
k∑
i=1

di needs to be computed in a distributed manner,

where at the end of the computation, each player only knows its own di.
Traditionally, the gcd algorithm is used to find an inverse of e mod ϕ, but
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that would involve computing modular arithmetic when the modulus is se-
cret shared, which is possible, but really slow. The value of ϕ = N−p−q+1
is not known by any of the players, but all players know their part, ϕi, where

ϕ =
k∑
i=1

ϕi. Knowing this, fortunately there is a trick for computing e−1 mod

ϕ without using any reductions modulo ϕ. The trick involves three steps:

1. Compute ς = ϕ−1 mod e.

2. Set T = −ς · ϕ+ 1. Observe that T ≡ 0 mod e.

3. Set d = T/e. It can be verified that d = e−1 mod ϕ since d · e =
T ≡ 1 mod ϕ. Using this method, the need for reductions modulo ϕ
is avoided.

The protocol is performed as follows:

Step 1: The players compute the value of l = ϕ mod e. This can be done
by each player calculating li =

∑
ϕi mod e locally, before doing a

joint MPC to obtain the value l =
∑
li mod e.

Step 2: Each player now calculates ς = l−1 mod e locally. As shown above
d = T/e = (−ς · ϕ+ 1)/e, therefore each player also locally calculates

di =
⌊−ς · ϕi

e

⌋

After each player has successfully calculated di, the RSA private ex-
ponent d =

∑
di + r where 1 ≤ r < k.

Step 3: Once each player has obtained its di, a final computation needs to
be done in order to determine the value of r. Note that for a encrypted
message c, the decryption would be

M ≡ cd ≡ cr
∏

cdi mod N

Therefore, one of the players can determine the value of r simply by
trying all possible r’s in a trial decryption. Say player 1 is the one doing
the trial decryption, it picks a random message m ∈ ZN and computes
c = me mod N . Then every player participates in a decryption of c.
Each player calculates mi = cdi mod N locally, and sends the result to
player 1. Player 1 knows that the value of r is in the range 1 ≤ r < k,
and tries all of them to see which one satisfies

m
?=
(∏

mi

)
cr mod N
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At last player 1 updates d1 by setting d1 = d1 + r. The distributed
RSA protocol is now complete with the correct value of d secret shared
among the k players.

Note that using a static e makes the protocol very efficient, but some bits of
the key is leaked to all the players. The leakage happens when calculating
l = ϕ mod e and the trial decryption process where r is determined. This is
a total of log2 e+ log2 k bits. This step can however be conducted such that
no bits are leaked by using an arbitrary public exponent (calculated each
time a key is generated), but this makes the protocol somewhat less efficient
(see [BF97]). Another approach is to just increase the total number of bits
in N to compensate for the leaked bits.

5.3.5 Decryption

Once a distributed RSA key is generated, the players can participate in a
joint decryption of a ciphertext C that has been encrypted using the public
key. In order to do so, the players do almost the same as are done when the
trial decryption is conducted, only this time r is already found, therefore
they do an MPC to find M directly:

M =
k∏
i=1

mi mod N =
k∏
i=1

Cdi mod N

The decryption process is conducted by each player locally calculating its
part of M , mi = Cdi mod N , which in turn is secret shared among the
players. Next, the players perform an MPC on the shared mi’s to obtain
the total m

m =
k∏
i=1

mi

The value of m is revealed and the message M is found by calculating

M = m mod N

5.3.6 Signature

The players can also sign a message, and therefore provide authentication.
The signature process is performed as follows: A message M is to be signed
using the secret shared part of the private key, d. The message M is chosen
by one of the players and sent securely to all the other players. Then each
player calculates its part, ci, of the signature C:

ci = Mdi mod N
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The values of the ci’s are then secret shared among all the players, and the
total c is obtained by conducting an MPC

c =
k∏
i=1

ci

The value of c is revealed and the signature C is found by calculating

C = c mod N
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Chapter 6
Distributed RSA Implementation in
VIFF

This chapter describes the implementation of a distributed RSA protocol
for three players in VIFF, programmed as the main part of this thesis (the
code can easily be altered to support more players). The implemented code
is included in Appendix D, and a description of the general multiprecision
Python (GMPY) module, which is used extensively throughout the imple-
mentation, is found in Appendix E.

The distributed RSA implementation is based on the protocol proposed in
[BF97], which is described in detail in Section 5.3. Two changes have been
made to the protocol to speed up the time needed to generate valid keys,
regarding the distributed trial division and trial division on N , respectively.
The implemented algorithm can generate arbitrary large key sizes (validated
up to 4096 bits in VIFF) with a success rate of 100%. At the end of the
key generation process, the players are convinced that the public N is the
product of two unknown distinct primes, p and q, and that they share a
valid key.

6.1 Coding Style

Recall from Section 3.2 that an MPC consists of three stages: Input stage,
computation stage and final stage. Further, as explained in Section 4.4.1,
these three stages are implemented using two functions in VIFF. The first
function is used for the two first stages, inputting the values and do the
computations. The second function is used for the final stage, to reveal the
answer. Throughout the distributed RSA code, this procedure is used thor-
oughly, the first function having a descriptive name function name() and
the reveal function having the paired name check function name().
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The first step in the distributed RSA algorithm, involving picking candidates
for p and q, have distinct functions for p and q, although the code contained
in these functions are virtually alike, the only difference found is when the
protocol moves to the next step (trial division on N). This choice is purely
for simplifying the readability of the code, and does not make the code slower
in any way, although more code is needed.

6.2 Initialization

The initialization process is a standard code used in all VIFF applications
to setup the program with the right parameters and is written by the VIFF
Developer Team. Basically, this code creates a runtime instance, parses the
command line arguments into the application and starts the Twisted event
loop. Next, the application is initialized by making an instance of the Pro-
tocol class, which is the main application. The code for the setup process is
of course included in the distributed RSA code in Appendix D, but will not
be described in any more detail in this thesis.

The main application starts at the init function in the class Protocol,
where variables marked as changeable variables must be set to the desired
output from the protocol. These include the number of rounds to be con-
ducted (both for key generation and for decryption), the key size for each
round, and the boundaries for trial division.

6.3 Key Generation

The step to generating valid keys is by far the most time consuming step
in the protocol. As shown in Figure 5.4, the algorithm for generating dis-
tributed RSA keys involve 4 steps, which will be described in the following.

6.3.1 Pick Candidates

An overview of the implemented function in VIFF for picking candidates is
shown in Figure 6.1. To avoid misunderstandings with the candidate p and
the size of the finite field Zp, q is used to represent both the candidates, p
and q, in the following.

The implementation starts by each player picking a private qi such that
q = q1 + q2 + q3. Next, the players perform a distributed trial division on q,
which assures that q is not divisible by any small prime number up to the
boundary B1.
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Figure 6.1: Flow chart for the implemented functions for picking candidates p and
q and doing distributed trial division. Parameters to the functions are omitted.

The trial division in this thesis is implemented in a more optimized manner
compared to the method described in Section 5.3.1, and is the first of the two
improvements to the algorithm. Recall that for the distributed trial division
in [BF97], the distributed trial test is conducted two times for each small
prime l < B1 to decrease the probability of discarding a good candidate.
By doing this the probability of discarding a good candidate is equal to

1−
∏
l<B1

(1− 1
l2

) <
1
2

In the VIFF implementation, a boundary B1 = 12 is used, meaning that
the probability of discarding a good candidate p and q, independently, would
have been approximately 17.1%. Consequently nearly 1/5 of the good can-
didates would have been discarded for both p and q. The implemented
method for the distributed trial division in this thesis has zero probability
of discarding a good candidate, and is specially constructed for three play-
ers, although it can easily be expanded to support an arbitrary number of
players. The method is as follow: Let l < B1 be a small prime number and
qi be player i’s part of q. Each player now locally calculates q triali = qi
mod l and picks a random integer ri ∈ Z∗p. Then the players secret share
the values of q triali and ri and computes

q trial tot = (q trial1 + q trial2 + q trial3)
r trial tot = (r1 + r2 + r3)
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Next, for simplicity, set t = q trial tot, and the players computes trial reveal
as follows

trial reveal = t · (t− l) · (t− 2 · l) · r trial tot

and the answer trial reveal is revealed to all players. The beauty of this
method is that the revealed answer is now zero if and only if q is a bad
candidate, else it’s just a random number. The correctness of this method
is because when summing up t =

∑
(q triali mod l), for three players, there

are only three illegal t’s, namely: 0, l and 2 · l (for four players an additional
multiplication of (t − 3 · l) would have been needed and so forth). If the
revealed answer is not zero, it’s just a random number that does not yield
any information about q.

Notice from Figure 6.1 that the distributed trial division is performed on
the primes p and q separately, which means failing either p or q, it’s only
necessary to generate the failed prime again.

6.3.2 Trial Division on N

The next step in the algorithm is to revealN and continue by doing local trial
division on this value. The second improvement in comparison to [BF97] is
implemented for this step. An overview for the implementation functions
regarding trial division on N is shown in Figure 6.2.

Figure 6.2: Flow chart for the implemented functions for doing trial division on
the revealed N . Parameters to the functions are omitted.
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In [BF97], once p and q have passed the distributed trial division and N
has been computed using an MPC, a more comprehensive trial division on
N in the range [B1, B2] is conducted locally. In the VIFF implementation
however, the same range [B1, B2] is not checked by each player. Instead
each player checks a different range of small primes, and when finished, all
players agree whether any of the players have found an illegal factor of N .

The VIFF code is written such that the players collaborate to check that
N is not divisible by any prime number less than 20000. Player 1 checks
all the primes from B1(= 12) to 15000 (1749 in total). Player 2 checks all
primes from 15001 to 17500 (260 in total), and finally, player 3 checks all
primes from 17501 to 20000 (248 in total). The code for the trial division
on N is included in Figure 6.3 (comments omitted):

Figure 6.3: VIFF code for the local trial division on N. Each player checks a range
of small primes before all players agree whether N has an illegal factor not equal
to p or q.

As can be seen in Figure 6.3 each player runs through its list of prime num-
bers and checks that N is not divisible by any of them. If N turns out to be
divisible by a prime number, the loop for that player will break. Next, the
value from each player is secret shared and summed up by doing an MPC
before it is revealed (the reveal function check primality test N is not shown
here). If the revealed answer is not equal to zero, one or more of the players
have failed N as a candidate, and the whole process have to start over again
with picking p and q. One interesting thing to notice here is why player 1
can check a much larger span of prime numbers. This is simply because of
the break command in the code. The probability of a number N being di-
visible by any prime number is higher for small primes, and therefore player
1 will fail in the loop most often. If all players had checked equal amounts
of prime numbers, then on average player 1 would fail rather quickly and
would just be waiting, while player 2 and player 3 would most often have to
finish their whole lists.
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Both [BF97] and [MWB99] have proposed similar and quite different meth-
ods for optimizing this step, see more in Further Work (Chapter 9).

6.3.3 Distributed Biprimality Test

No changes have been done to the distributed biprimality test as it is ex-
plained in Section 5.3.3. The implemented functions for this step are shown
in Figure 6.4. This test can fail when checking the v and when checking the
z, both of which will result in picking new candidate primes p and q from
the beginning. Failing the test on g is solved by picking a new g and does
not have to start the whole protocol from the beginning.

Figure 6.4: Flow chart for the implemented functions for performing the dis-
tributed biprimality test. Parameters to the functions are omitted.

One thing to notice in the implemented code is when generating the g (shown
in Figure 6.5). The g is picked by player 1, but everyone needs to get hold of
the value. This is done by a simple secret sharing where player 1 inputs its
g-value, and the other players participate in the sharing, but does not input
anything to the shamir share-function. This way, the players can efficiently
agree on the value of g.

6.3.4 Calculate Exponents

After the first three steps in generating a distributed RSA key, the rest of
the protocol, calculating the exponents, cannot fail, and is therefore done
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Figure 6.5: VIFF code for sharing the g picked by player 1 among all players
before revealing the value.

quickly in order of time consumption. The flow chart for implementing this
step in VIFF is shown in Figure 6.6.

Figure 6.6: Flow chart for the implemented functions for calculating the public
and private exponents. In addition, decryption and signature are shown as seperate
functions, which can only be performed after the whole key generation is already
done. Parameters to the functions are omitted.

This step is carried out precisely as described in Section 5.3.4, where the
public exponent used is the standard RSA exponent e = 216 + 1 = 65537
and player 3 is the one adjusting d3 = d3 + r in the implemented code when
trial decryption is conducted. Note that it’s very common to use a static,
small RSA exponent as the public exponent e, like the one chosen in this
implementation. In practice, the most common static e’s are the Fermat
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primes1. The reason why these numbers are convenient to use is because
they make the modular exponentiation operations faster. When representing
a Fermat prime in bits, there are only two 1’s (the most significant bit and
the least significant bit), the rest of the bits are zeros, meaning that the
needed calculations are minimal. This approach however, can suffer from
some powerful attacks, see [FKJM+06] and [AA07].

6.4 Decryption and Signature

The functions for decryption and signature are separate functions that can
be executed after a valid distributed key has been generated. The flow chart
for the implemented VIFF decryption and signature functions are included
in Figure 6.6. The trial decryption when adjusting the private exponent
d, decryption and signature are all very similar, and the code for normal
decryption is shown in Figure 6.7.

Figure 6.7: VIFF code for performing a distributed RSA decryption for three
players.

1Fermat Primes: Prime numbers Fx, that have the form Fx = 22x + 1. The first
three Fermat primes are 3, 17 and 65537, referring to x = 0, 2, 4 respectively ([Lim09]).
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The code consists of two functions, decryption and check decryption, where
decryption does the computations and check decryption reveals the answer.
As can be seen, first each player locally calculates its m i, which in turn is
secret shared among the players, obtaining the variables m1, m2 and m3
with shared values. Next, an MPC is conducted yielding m tot = m1 ·m2 ·
m3, before the result of m tot is opened and revealed when the result is
ready. The final answer, message M , is found by calculating the revealed
value modulus N .

6.5 Code for Benchmarking

The implemented VIFF distributed RSA code also contains functions for
benchmarking. Benchmarking of the key generation process is incorporated
in the trial decryption at the end of the step for calculating the RSA expo-
nents. In addition, the decryption process can also be benchmarked, which
is optional. If this benchmark is activated, several decryptions of different
ciphertexts are perform in a serial manner. The number of rounds for both
key generation benchmark and decryption benchmark is set as described in
the initialization above, and needs to be set before the protocol is executed.

6.6 Running the Program

To run the distributed RSA protocol, VIFF needs to be installed, see how
to do so in Appendix B. As explained above, in the function init a list
of alterable variables is found, that are the preferences for the output of the
protocol, and needs to be set. Do not however alter the variables that are
outlined as unalterable variables, as this may result in failure of the proto-
col. This guide to run the program is described for running all three players
locally on one machine using SSL between the players.

Start by opening three Windows Command Prompts, then create the con-
figuration files and the certificates files before starting the program for each
player in separate windows, the procedure is as follows:

Window 1 : python generate-config-files.py -n 3 -t 1 localhost:9001 local-
host:9002 localhost:9003

Window 1 : python generate-certificates.py

Window 1 : python RSA.py player-1.ini

Window 2 : python RSA.py player-2.ini

Window 3 : python RSA.py player-3.ini
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The time required to finish the protocol will vary, depending on the size
of the key and the number of rounds chosen, and of course the speed of
the computer used. In Figure 6.8, Figure 6.9 and Figure 6.10 the output
from player 1, player 2 and player 3 respectively are shown when a 128-bit
distributed RSA key is generated.

Figure 6.8: Player 1’s output when generating a distributed 128-bit RSA key.

Figure 6.9: Player 2’s output when generating a distributed 128-bit RSA key.

Figure 6.10: Player 3’s output when generating a distributed 128-bit RSA key.
Notice that player 3 is the one doing trial decryption and therefore has more output.

Even though a 128-bit key is not very hard to attack and considered to-
tally insecure, it’s just as an example, larger keys would produce multi lines
output for some or all of the variables, making it harder to read.

60



Chapter 7
Security Analysis and
Benchmarking

This chapter starts by describing two security weaknesses found in the pro-
tocol in [BF97], followed by some guidelines for required key size in RSA.
Finally, the benchmark results of the implemented distributed RSA algo-
rithm in VIFF are presented and discussed.

7.1 Security Weaknesses

Two weaknesses are found in the article [BF97], both with respect to the
way a random number is used to secure the revealed answer. Both weak-
nesses could possibly reveal p and q and therefore also the private key {d,N}.

7.1.1 Weakness 1: Distributed Trial Division

The first weakness is found in the distributed trial division, one of the very
first steps in the protocol, but can be avoided by implementing the improve-
ment described in Section 6.3.1.

As explained in Section 5.3.1, let q = q1 + q2 + q3 be the candidate, l be a
small prime and ri a randomly picked integer by player i from the field Zp.
In the proposed algorithm in [BF97], the players now compute

qr =
(∑

qi
)(∑

ri
)
mod l

The problem here is that
∑
ri is a random number from a large field Zp,

meaning that the probability for r to be prime is approximately 1/ln(p)1

1The Prime Number Theorem: The ratio of the number of primes not exceeding x
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(where ln(p) represents the natural logarithm of p). If r is not a prime,
it must be composite, meaning that it can be factorized into prime num-
bers smaller than r. Any number, a, can be written as a product of prime
numbers, a = pα1

1 · p
α2
2 . . . pαnn for prime numbers pi and positive integers

αi. Therefore the security of q in this scheme is dependent of the size of
the biggest factor of r. If the biggest factor of r is small enough, r can be
successfully factorized and in turn, q can be found.

The security can however be increased by letting each player locally calculate
si = qi mod l, then jointly compute

qr =
(∑

si
)(∑

ri
)
mod l

This way, the calculation of q mod l is correct, and since the actual q is
never included in the calculation it can therefore not be found even if the
factorization of r is found. The problem however, is that the speed improve-
ment proposed for this step in Section 6.3.1 would then not apply. On the
other hand, by using the distributed trial division improvement proposed in
this thesis, both the speed and the security is improved and is therefore the
preferred method.

This weakness can be exposed after the protocol has accepted a pair of
candidates p and q. Knowing that p and q are actually prime numbers, by
the fact that the trial decryption for d was correct, a player can go back
to this step and find all small factors of r. When the remainder of qr,
after successfully dividing it by small prime numbers, is close to ln2(N)/2
bits, a statistical prime test2 can be used to check a range of primes around
the remainder of qr, then there’s a chance that the correct prime is found.
The reason is that the number of bits in the remaining part of qr, after
successfully dividing it by small prime numbers, will decrease with ln2(x)
bits (where x is a prime factor of qr) for each successful factor found of qr,
and both p and q are approximately ln2(N/2) bits. Knowing that p and q
are valid candidates and knowing the public exponent N makes it easy to
check if a valid prime has been found since N has exactly two factors, and
guessing one of them, reveals the other one.

and x/ln(x) approaches 1 as x grows without bound. This consequently means that the
probability for a randomly picked integer x to be prime is approximately (x/ln(x))/x =
1/ln(x) ([Ros03]).

2A statistical prime test (actually a compositeness test, since the test only outputs
probably prime, or not prime) is most often a simple fast test that is performed many times
to achieve a certain probability of a correct answer. The most popular prime tests are the
Miller-Rabin primality test, Solovay-Strassen primality test and the Fermat’s primality
test, see [TW06] for detailed information about each of them.
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7.1.2 Weakness 2: Alternative Step in Distributed Biprimal-
ity Test

The second weakness is found in the alternative step to step 4 in the bipri-
mality test. The step checks the integers that fall into case 4 in the proof in
[BF97], meaning whether gcd(N, p+ q − 1) > 1. If the test is true, then N
is rejected and the whole protocol will have to restart by picking candidates
for p and q. Each player picks a random ri ∈ ZN and keeps it secret. Next,
the players jointly computes

z =
( 3∑
i=1

ri
)(
− 1 +

3∑
i=1

(pi + qi)
)

(mod N)

where the mod N part must be done after z is revealed. Because the mod
N part needs to be done after revealing z, this step suffers from the same
weakness as the weakness described for the distributed trial division. The
security relies on the random number r, and more specifically, on the largest
prime factor of r. If r does not consist of large enough factors, both p and
q can be found by any of the players by finding the relation of N = pq and
part of the expression used to calculate z, namely p+ q.

It can be seen that the expression (−1 + p + q) is approximately b =
(log2(N/2) + 1) bits long. Now consider if r actually consist of very many
small factors, such that it’s computationally feasible to find all factors of
z except the factor (−1 + p + q). The search for factors ends when z is
divided down to approximately b bits. If such is the case, then the following
relationship between N and p, q can be found:

N = pq ⇒ q = N
p

z = r(−1 + p+ q)
Rearranging variables and inserting the new expression for q yields

z
r = −1 + p+ q
z
r + 1 = p+ N

p
z
r + 1− p = N

p
zp
r + p− p2 = N

Moving all values on the left side yields

−p2 + zp

r
+ p−N = 0

This is a quadratic equation3 where p is the only unknown value. Solving
this equation yields two possible p’s, where the right one is found by dividing

3A quadratic equation is given on the form ax2 +bx+c = 0, where a 6= 0. The solution
to this equation (if any) is found by calculating x = −b±

√
b2−4ac

2a .
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N/p for both p’s and see which one yields an integer as the answer, which
in fact is the other factor of N .

Given that (−1 + p+ q) is not necessarily a prime, the probability of a suc-
cessful attack is higher for the trial division weakness (weakness 1), because
there it is given that one of the factors are around half the length in bits.
If (−1 + p + q) also turns out to be a composite number with many small
factors, every combination of small factors is possible for the factorization
of r, including those factors found for (−1 + p+ q).

In both weaknesses, the security relies on the biggest factor of the random
number r. One way of securing both the weaknesses is to pick random
numbers r that are guaranteed to have a large factor or ensure that r is
prime, but this is of course bothersome, and in fact the same problem that
is to be solved by picking the prime numbers p and q. Another way for
securing this weakness is to do the normal step in the distributed biprimality
test instead (see [BF97] and [MWB99]).

7.2 RSA Key Size Recommendation

The security of RSA relies on the difficulty of factoring large prime numbers
and therefore the size of a RSA key, both a standard key and a distributed
key, should be large enough such that is would be computationally infeasible
to factor the key and find p and q in reasonable amount of time. The size
of the key should therefore take into consideration how long the key will be
in use, and what it’s supposed to protect.

The RSA Laboratories started a challenge in 1991 with the name The RSA
Factoring Challenge, where RSA keys of different sizes where generated and
the modulus N was published for each of them. The aim of the challenge
was to be the first to find p and q given N , where finding the solution in-
volved collection of a prize money reward (for some key sizes only). The
challenge ended in 2007, and the highest factored key so far is the RSA-200
(factored in 2005), which contains 200 decimals, equal to 663 bits. For more
about the challenge, see [Sec07], [Con09d] and [Con09e].

Although the factoring of a 663-bit key was conducted using 80 powerful
computers and took several months to finish, keys less than 1024 bits are
considered insecure and are advised not to be used in any circumstances.
1024-bit RSA keys are used in many applications today, and for many of
those applications very high security is not required, typically in scenarios
where a key is used only once to send some data, e.g. form data, over the
Internet. A 1024-bit RSA key is not expected to be broken in the very near
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future, although it’s the next of the main keys sizes that will fall, since the
512-bit RSA key was broken in 1999.

For other applications that are more dependent on high security in order
to maintain their reputation, such as banks, a key size of at least 2048 bits
is recommended, in some cases also 3072 bits or 4096 bits, all of which are
expected not to be breakable in decades to come. In the case of a bank,
typically the RSA key is used to encrypt a certificate that is used to commu-
nicate securely with the bank. Such a certificate often has long operating
time, ranging from several months to several year, which strengthen the
recommended need of a very secure key.

7.3 Benchmarking the Implementation

Benchmarking for the implemented distributed RSA protocol in VIFF has
been conducted both with three players on three distinct computers on a
local area network (LAN) in addition to all players performing the protocol
on one computer (using different port numbers). Both key generation and
decryption have been benchmarked. The results are discussed in this section.

7.3.1 Benchmark Equipment

The benchmark equipment used is three computers which are connected via
a 10 Mbit/s wired LAN. The specifications on the three computers are as
follows:

• HP Compaq DC7900, Intel Core 2 Duo processor clocked at 3 GHz,
3.5 GB memory, Windows XP SP3.

• Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

• Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

All three computers have been used when benchmarking over LAN, while
the HP Compaq DC7900 computer has been used to benchmark locally with
all player on the same computer.

7.3.2 Key Generation

The key generation part measures the average time needed to generate a
valid key. In this thesis the average is found by performing the key genera-
tion protocol 100 times and take the average of all rounds. The benchmark-
ing is conducted for key sizes 32-bit to 4096-bit using SSL on all tests. The
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# bits Rounds Avg.time Ratio Min (s) Max (s)
32 100 1.75 s 0.03 min N/A 0.30 6.54
64 100 3.08 s 0.05 min 1.76 0.48 9.67
128 100 15.20 s 0.25 min 4.94 0.77 87.17
256 100 58.28 s 0.97 min 3.83 0.67 294.77
512 100 226.55 s 3.78 min 3.89 1.04 1326.16
1024 100 1956.69 s 32.61 min 8.64 7.04 8861.80
2048 10 7252.28 s 120.87 min 3.71 9.51 20713.43
4096 1 132603.92 s 2210.07 min 18.28 - -

Table 7.1: Benchmark for generating valid distributed RSA keys on LAN. Ratio
is the current average divided by the previous average.

benchmarking of the largest keys is very time consuming, and has therefore
been benchmarked less rounds (10 rounds and 1 round, respectively), which
means that they are not very statistical accurate. Key sizes less than 1024
bits are generally considered insecure, and benchmarking these are purely
to get an overview of the increase in time needed to generate valid keys as
the keys get larger. The results from the LAN benchmark are presented in
Table 7.1.

The first thing to notice from Table 7.1 is that the average time for generat-
ing a 1024-bit distributed RSA key over LAN is 32.6 minutes, ranging from
7 seconds as the fastest to 8861 seconds (∼148 minutes) as the slowest. Half
an hour is quite a lot of time, and it excludes several scenarios for use of a
distributed RSA key. It can also be seen that based on 10 rounds, it takes
on average roughly 2 hours to create a 2048-bit distributed RSA key, and
a stunning 37 hours to create a single 4096-bit distributed RSA key. Even
though the last is based on one round only, it reveals that creating such a
large key can be very time consuming. On the other hand, for scenarios
where the distributed key is not needed instantly and is going to be used for
a long while, half an hour or more does not seem to be impractical.

As for the ratio measurement, notice that a steady ratio of approximately
4 applies to the low length keys (up to 512 bits), which is also the ratio to
expect when generating a distributed RSA key using the algorithm in [BF97].
Recall that the probability of a randomly picked number near N being prime
is approximately 1/ln(N). Doubling the number of bits in N means to
square the maximum value of both p and q, e.g. max(p, q) = (2256)2 = 2512,
which in turn decrease the probability of picking a prime to half.

1/ln(2256) = 1/(256 · ln(2)) = 0.56%
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1/ln(2512) = 1/(512 · ln(2)) = 0.28%

Consequently, a steady decrease factor of 2 applies for finding primes when
doubling the key size. Recall also that the distributed RSA protocol picks
both p and q before N is calculated and revealed, meaning that the proba-
bility of both being prime at the same time is

1
ln(p) ·

1
ln(q) ≈ 1/(ln(p)2)

which means that the probability is decreased as a consequence of squaring
(in reality a little less because distributed trial division is conducted when
choosing p and q, before calculating N). The total ratio is therefore ex-
pected to be approximately the decrease factor squared, that is 22 = 4.

The ratio from a 512-bit key to a 1024-bit key is 8.64, which is not accord-
ing to the expected ratio. The average time used increases from an average
of 3.78 minutes on the 512-bit keys to an average of 32.61 minutes on the
1024-bit keys, which indicates that 1024 is the first key that is less efficient
to generate. The cause is not solely one reason, but rather several reasons
is of significance. As the key sizes increases, the calculations must be per-
formed on larger numbers, requiring more memory, more network traffic is
generated (potentially exceeding the limit of maximum packet size) and a
larger Zp must be used to be able to represent all the shared values.

The results from the local benchmark are presented in Table 7.2. The first
thing to notice is that these results are greatly improved compared to the
LAN benchmarks. The reason is mainly because the network traffic can be
sent locally on different ports instead of via the wired LAN. Another reason
is that the computer benchmarking locally is slightly faster than the two
other computers. This last point does not however contribute that much,
given that this computer only have 2 cores, therefore only 2 players can do
calculations at the same time, while in the LAN benchmark, all players have
calculation power whenever needed.

Compared to the LAN benchmark, all key sizes takes approximately half the
time to conduct locally instead of over the LAN. The 1024-bit key size is ac-
tually even better, performed in approximately 43% of the time needed over
LAN. The ratios are a bit more fluctuating for this benchmark, although
reasonable near a factor of 4 up to key size of 1024 bits. An interesting
thing is the one 4096-bit key generated, using less than 3 hours compared to
the one using 37 hours to generate over LAN, which means, as mentioned
above, that such large keys can vary a lot in time consumption.
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# bits Rounds Avg.time Ratio Min (s) Max (s)
32 100 0.66 s 0.01 min N/A 0.07 3.23
64 100 1.54 s 0.03 min 2.33 0.09 10.47
128 100 7.90 s 0.13 min 5.13 0.61 47.75
256 100 26.72 s 0.45 min 3.38 1.10 139.88
512 100 124.89 s 2.08 min 4.67 3.07 703.02
1024 100 835.48 s 13.92 min 6.69 4.94 3753.72
2048 10 6165.49 s 102.76 min 7.38 19.46 13128.69
4096 1 10431.07 s 173.85 min 1.69 - -

Table 7.2: Benchmark for generating valid distributed RSA keys locally. Ratio is
the current average divided by the previous average.

The range between minimum time and maximum time in the key generation
benchmarks is quite big for all key sizes and for both LAN and locally. This
is as expected because of the distribution of primes and the fact that both
p and q must be prime at the same time, which increases the variance in
these results.

From [BF97] and [MWB99] it can be read that 1024-bit keys are generated in
approximately 90 seconds on much slower computers (clocked at 300 MHz).
The reasons are many, the algorithm can be optimized in many ways, see
Chapter 9 for more details. As a comparison, standard RSA protocols that
are implemented efficiently typically uses milliseconds to generate a 1024-bit
key on a standard desktop computer, whereas 4096-bit keys typically ranges
from milliseconds to hundreds of milliseconds.

The fact that the most time-consuming step in the distributed RSA protocol
is the key generation becomes clear from Table 7.3. The important thing to
notice here is that the steps for key generation, up to the step for generating
l, is very time consuming, and is conducted numerous times. On the other
hand, once some candidates p and q have passed all the test up to the step
for checking v, the rest of the steps are only conducted 1 time. This means
that improvements on the run-time of the protocol should focus on the key
generation step, and not so much on the step for calculating the exponents
and doing decryption and signature.

7.3.3 Decryption

The benchmark results for decryption are shown in Table 7.4. Note that
these results will also be valid as signature benchmarks, because basically
the same code is executed.

The number of rounds for all key sizes is 20, which is enough to give a very
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Function name LAN Local
generate p 15049 13972
generate q 15051 13970
trial division p 39997 37152
check trial division p 39997 37152
trial division q 39999 37137
check trial division q 39999 37137
check n 6256 5812
primality test N 6256 5812
check primality test N 6256 5812
generate g 934 861
check g 934 861
check v 467 431
generate z 1 1
check z 1 1
generate l 1 1
generate d 1 1
check decrypt 1 1

Table 7.3: The average number of times each of the functions in the implementa-
tion is run when generating a valid 1024-bit key (divided into the 4 steps for the
distributed RSA protocol).

LAN Local
# bits Rounds Avg. time Ratio Avg. time Ratio

32 20 6.4 ms N/A 3.3 ms N/A
64 20 6.6 ms 1.03 3.4 ms 1.03
128 20 6.7 ms 1.02 3.4 ms 1.00
256 20 7.6 ms 1.15 4.1 ms 1.21
512 20 9.7 ms 1.28 5.0 ms 1.22
1024 20 20.2 ms 2.08 12.8 ms 2.56
2048 20 69.1 ms 3.42 53.2 ms 4.16
4096 20 560.7 ms 8.11 263.6 ms 4.95

Table 7.4: Benchmark results for decrypting a message once a valid key is found.
Ratio is the current average divided by the previous average.
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good estimate for this benchmark because the variance in each set of results
is very small. As can be seen, the times are measured in milliseconds, which
means that once the key is generated, both decryption and signature can be
used to more or less all possible scenarios by virtually not using any time at
all, even for large keys.

The ratio is increasing very slowly up to 1024 bits, using almost the same
amount of time for 32-bit keys as for 512-bit keys. Again, the first leap is
from 512 bits to 1024 bits, however this leap is not as big for decryption
as for key generation. One reason for the lesser leap is that doing decryp-
tion and signature code is conducted one time only in any case, while for
key generation the leap is affected by the accumulated value of many failed
tries. The ratio leaps further to 2048 bits and 4096 bits increase even a bit
more, but the overall time needed is fairly low for all key sizes. It can also
be seen that the time needed to locally compute decryption and signature is
about half the time needed over LAN, which is essentially the same as was
found for key generation.

The results from each benchmark can be found in the electronic appendix
along with a valid generated distributed 4096-bit RSA key for 3 players.
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Chapter 8
Conclusions

The main goal of this thesis was to understand the basic theory of multi-
party computations and implement a fully functional distributed RSA pro-
tocol using secure multiparty computations in VIFF. The theory of MPC
is covered in Chapter 2 and 3, with the main focus on additive secret shar-
ing, Shamir’s secret sharing, the three stages used in every MPC, MPC
adversaries and the two most basic mathematical operations used in MPC,
addition and multiplication. Next, a distributed RSA protocol has been suc-
cessfully implemented for three players in VIFF, which includes distributed
key generation, decryption and signature, which are the important features
of a distributed RSA protocol. The implemented protocol allows three play-
ers to generate and use a distributed RSA key of arbitrary size in a secure
manner.

A supplementary goal of this thesis was to benchmark the solution in order
to find ways to speed up the implementation. Benchmarks have shown that
generating keys sufficiently large for use in common scenarios, having at
least 1024 bits, varies from seconds to days, averaging from tens of minutes
to several hours, which indicates that the current implementation is best
suited for scenarios that allow the key to be generated in advance. The
benchmark results also show that once a key is generated, both the decryp-
tion and signature process can be conducted very fast even for large key sizes
and could be used to perform immediate tasks. Two run-time improvements
are implemented compared to the original protocol, the first at the step for
distributed trial division and the second at the step for local trial division
on the revealed N . The distributed trial division improvement is the more
important of the two when it comes to increasing the efficiency of the pro-
tocol because this step involves communication between the players, which
require much more time than local computations.
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Another supplementary goal of this thesis was to analyze the security of
the protocol. Two security weaknesses was found, both of which relates to
the way a random number is used to secure a revealed answer. Both weak-
nesses could possibly reveal the private key to any of the players. The first
weakness relates to the distributed trial division step, whereas the second
weakness is regarding the alternative step in the biprimality test. Methods
for avoiding both the weaknesses are described, and the distributed trial
division weakness is also repaired in the implemented protocol, a repair that
fixes the security weakness and speeds up the protocol at the same time.

72



Chapter 9
Further Work

In this chapter, some suggestions for further work for the distributed RSA
VIFF implementation are presented. In general, many changes can be done
in order to enhance the efficiency of the implementation. These changes
have not been carried out in this thesis due to the lack of time. Most of the
proposed changes are inspired by [MWB99], where a lot of experimentation
has been conducted. Implementing some or all of these changes will defi-
nitely make the key generation process a lot faster, and therefore making it
more useful in any type of scenario.

• GMPY should be used to represent all the values in the VIFF program.
Using GMPY instead of standard Python integers on all values in the
program will greatly increase the efficiency of the protocol. Sigurd
Meldgaard from the VIFF Developer Team estimates a 10-20% speed
up in key generation with this rather simple fix alone.

• Apply distributed sieving to improve the distributed trial division step.
The players can pick their pi and qi in such a way that it is guaranteed
that

∑
pi and

∑
qi is not divisible by any prime less than a sieving

bound. The experimentation in [MWB99] reports on a 10-fold improve-
ment in running time for this step alone when generating a 1024-bit
key.

• Test several candidates in parallel by testing several values for p and q
simultaneously. The nature of MPC is not very efficient, given that the
players are waiting at several synchronization points to receive shares
from each other. By testing several candidates in parallel, each player
normally have some calculations that can be done for at least one of
the candidates, which decreases the idle time for each player, and thus
improving the efficiency of the protocol.
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• Perform parallel trial division on N , which is the idea of trying many
primes in each division conducted. The idea is that instead of checking
that N is not divisible by any prime number [B1, B2] for some bounds
B1 and B2, instead a more efficient check is to multiply several primes
from this range, a = p1 · p2 · ... , and check that gcd(a,N) = 1. If any
of the primes divide N , then gcd(a,N) will not output 1, and the test
consequently fails.

• Apply load balancing, which is the idea of balancing the calculations
done for each player. Recall that the protocol at several places let
a specific player do some calculation, such as the calculation of the
Jacobi symbol in the distributed biprimality test, which is always con-
ducted by player 1, or the trial decryption process which is always cal-
culated by player 3 in the implementation. The responsibility should
rotate between all players, such that player i does the calculations ev-
ery k time, where k is the total number of players. Applied together
with testing several candidates in parallel, makes the workload for each
player very uniform.

• The step for calculating the private exponent d should be implemented
for arbitrary e’s, either using the method described in [BF97] or the
method described in [CGH00]. This step will hardly affect the run-
time for generating a valid key, but will increase the security of the
protocol.

74



References

[AA07] P. Antonov and V. Antonova. Development of the attack
against rsa with low public exponent and related messages. In
CompSysTech ’07: Proceedings of the 2007 international con-
ference on Computer systems and technologies, pages 1–8, New
York, NY, USA, 2007. ACM.

[ACS02] Joy Algesheimer, Jan Camenisch, and Victor Shoup. Efficient
computation modulo a shared secret with application to the
generation of shared safe-prime products. In In Advances in
Cryptology - Proceedings of CRYPTO 2002, pages 417–432.
Springer-Verlag, 2002.

[BCD+08] Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Mar-
tin Geisler, Thomas Jakobsen, Mikkel Krøigaard, Janus Dam
Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Secure multiparty
computation goes live. Cryptology ePrint Archive, Report
2008/068, 2008.

[BDNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp:
a system for secure multi-party computation. In CCS ’08: Pro-
ceedings of the 15th ACM conference on Computer and commu-
nications security, pages 257–266, New York, NY, USA, 2008.
ACM.

[BF97] Dan Boneh and Matthew Franklin. Efficient generation of
shared rsa keys. In Advances in Cryptology – CRYPTO 97,
pages 425–439. Springer-Verlag, 1997.

[BL90] Josh Cohen Benaloh and Jerry Leichter. Generalized secret
sharing and monotone functions. In CRYPTO ’88: Proceed-
ings of the 8th Annual International Cryptology Conference

75



76 REFERENCES

on Advances in Cryptology, pages 27–35, London, UK, 1990.
Springer-Verlag.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation. In STOC ’88: Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages
1–10, New York, NY, USA, 1988. ACM Press.

[Bri90] Ernest F. Brickell. Some ideal secret sharing schemes. In EU-
ROCRYPT ’89: Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptol-
ogy, pages 468–475, New York, NY, USA, 1990. Springer-Verlag
New York, Inc.

[Can95] Ran Canetti. Studies in Secure Multiparty Computation and
Applications. PhD thesis, Weizmann Institute of Science, De-
partment of Computer Science and Applied Mathematics, 1995.

[Can01] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. In FOCS ’01: Proceedings of the
42nd IEEE symposium on Foundations of Computer Science,
page 136, Washington, DC, USA, 2001. IEEE Computer Soci-
ety.
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Appendix A
Electronic Appendix

A compressed zip-file is attached to this thesis and contains the following:

• The distributed RSA code implemented in VIFF for three players.

• The references used for this thesis (articles only).

• The benchmark results for both key generation and decryption. The
results are divided into two folders, LAN and Local, each having results
for all key sizes, 32 bits to 4096 bits.

• A valid 4096-bit distributed RSA key for three players as a proof of
concept of the implemented protocol in VIFF.
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Appendix B
Install VIFF

This chapter will describe step by step how to install VIFF on a Windows
XP machine. An installation guide can also be found by choosing your pre-
ferred operating system from http://viff.dk/doc/index.html (although
some steps are missing at the time).

B.1 Download and Install all the Necessary Files

A number of programs and modules need to be downloaded and installed in
order to successfully run VIFF programs. The steps below needs to be done
in this particular order:

• From the web page http://python.org/download/ download and in-
stall Python version 2.5.4 for Windows (python-2.5.4.msi)

• Update the environment variable Path (see below).

• Download and install Twisted for Python 2.5, http://twistedmatrix.
com/trac/.

• Download and install GMPY from http://code.google.com/p/gmpy/
(press Show all to find GMPY for python 2.5).

• Download and install Win32OpenSSL for Windows (newest version)
at http://www.slproweb.com/products/Win32OpenSSL.html. If in-
stallation requires Visual C++ 2008 Redistributables, it can be found
at the same web page, and have to be installed before Win32OpenSSL.

• Download and install PyOpenSSL for Python 2.5, found at http:
//pyopenssl.sourceforge.net/.
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• Download and install Python for Windows extensions for Python 2.5,
found at http://sourceforge.net/project/showfiles.php?group_
id=78018&package_id=79063.

• Download and install VIFF executable file from http://viff.dk/
#releases.

• Download and unpack the VIFF zip file from the same web page, copy
the apps folder into your viff folder.

The Windows PATH environment variable needs to be updated in order
to be able to execute Python code outside the Python folder itself. Follow
these steps to update the PATH environment variable in Windows XP.

Right-click on My Computer on the desktop and choose Properties from the
menu (Figure B.1).

Figure B.1: First step to update Windows XP’s environment variable: Go to the
computers properties.

From there go to the Advanced tab and press the Environment Variables
button (Figure B.2).
Next, choose Path in the System Variables view and press the Edit button
(Figure B.3).
Lastly, input your Python install folder in the Variable Value text field,
remember to separate with ; from the last entry in the text field (Figure
B.4).
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Figure B.2: Second step to update Windows XP’s environment variable: Go to
the Environment Variables.

B.2 Run Test Application

To test if the installation is working, try to run the millionaire example
included in /viff/apps/ as follows:

• Start three Windows Command Prompts by pressing Start menu−− >
Run... and write cmd.

• Browse to your /apps/ folder, found in /Python25/lib/site-packages/Viff/apps/

• In the first window, execute the following command: python generate-
config-files.py -n 3 -t 1 localhost:9001 localhost:9002 localhost:9003.
The configuration files for three players are now created with a random
seed value.

• In the first window, execute the following command: python million-
aires.py –no-ssl player-3.ini.

• In the second window, execute the following command: python mil-
lionaires.py –no-ssl player-2.ini.
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Figure B.3: Third step to update Windows XP’s environment variable: Open the
System Variable Path.

• In the last window, execute the following command: python million-
aires.py –no-ssl player-1.ini.

You should now get the correct ranking of the three millionaires, but each
window should only reveal their own amount of money (Figure B.5, Figure
B.6 and Figure B.7).

The option of running protocols with SSL is also an option. This will re-
quire running the following command in any of the windows after running
the generate-config-files.py command: generate-certificates.py. This will au-
tomatically create certificates for three players.

In order to run the program on distinct computers, and not all players
locally on one computer, both the configuration files and the certificates
(if used) needs to be distributed to the other computers, and the Internet
Protocol (IP) addresses of all the computers must be types in when running
the configuration files command. So instead of writing the addresses as
localhost:port, the command would be IPaddress:port.
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Figure B.4: Fourth step to update Windows XP’s environment variable: Append
a path for the System Variable.

Figure B.5: Player 1’s output when the test application finishes.

Figure B.6: Player 2’s output when the test application finishes.

Figure B.7: Player 3’s output when the test application finishes.
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Appendix C
Mathematics

C.1 Linear System Approach

Continuing from Section 3.6.1 the players can solve a linear system of equa-
tions. Each player can establish three equations using the formula as shown
in Equation (C.1).

fg(i, j) = si,j = sh + r1j + r2j
2 (C.1)

In Equation (C.1) i refers to the player holding the share and j refers to the
player that created the share. Player 1 can do the following calculations:

fg(1, 1) = s1,1 = 5
fg(1, 2) = s1,2 = −1
fg(1, 3) = s1,3 = −14

Organizing these values into a matrix yields:sh r1 r2 5
sh 2r1 4r2 −1
sh 3r1 9r2 −14


Player 1 wants to solve the equations with respect to sh, which is player 1’s
share of the total polynomial. Solving the linear system can be done using
Gaussian elimination [EP87] as shown below:

1 1 1 5
1 2 4 −1
1 3 9 −14

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 5
0 1 3 −6
0 2 8 −19

 R3 − 2 ·R2
=⇒

1 1 1 5
0 1 3 −6
0 0 2 −7

 1
2 ·R3
=⇒

1 1 1 5
0 1 3 −6
0 0 1 −3.5


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Going backwards from row three, all the unknown variables can be calcu-
lated:

r2 = −3.5
r1 = −6− 3 · r2 = −6− 3 · (−3.5) = 4.5
sh = 5− r1 − r2 = 5− 4.5− (−3.5) = 4

The value sh = 4 can be located in Table 3.4. Player 2 and player 3 have to
use their values in order to calculate their value of sh.

C.2 Vandermonde Matrix

Continuing from Section 3.6.1 the players do not need to solve the linear
system. By using the inverse of a Vandermonde matrix each player can ob-
tain its share of the total polynomial by means of a less complex calculation.
The Vandermonde matrix is defined as [Tur66]:

V =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
1 x3 x2

3 · · · xn−1
3

...
...

... . . . ...
1 xn x2

n · · · xn−1
n


V is the Vandermonde matrix and I is the identity matrix, both of size 3x3.
For three players where x1 = 1, x2 = 2 and x3 = 3 the two matrices are
defined as follows:

V =

1 1 1
1 2 4
1 3 9

 I =

1 0 0
0 1 0
0 0 1


Gauss-Jordan elimination is used to transform [V |I] into [I|V −1].

1 1 1 1 0 0
1 2 4 0 1 0
1 3 9 0 0 1

 R2 − 1 ·R1
=⇒

R3 − 1 ·R1

1 1 1 1 0 0
0 1 3 −1 1 0
0 2 8 −1 0 1

 R3 − 2 ·R2
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 2 1 −2 1

 1
2 ·R3
=⇒

1 1 1 1 0 0
0 1 3 −1 1 0
0 0 1 1

2 −1 1
2

 R2 − 3 ·R3
=⇒

1 1 1 1 0 0
0 1 0 −5

2 4 −3
2

0 0 1 1
2 −1 1

2

 R1 − 1 ·R2
=⇒

R1 − 1 ·R3

1 0 0 3 −3 1
0 1 0 −5

2 4 3
2

0 0 1 1
2 −1 1

2


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The tuple (3,−3, 1) in the first row of the inverse Vandermonde matrix will
always contain these values when three players are participating and they
use the indexes 1, 2 and 3. This gives an advantage for solving the linear
systems since no computation on solving the unknown variables needs to be
done.

From Table 3.3 player 1 has received the tuple of share values (5,−1,−14)
from player 1, 2 and 3, respectively. In order for player 1 to find its share
on the total polynomial, the matrix multiplication of the two tuples is cal-
culated:

[
3 −3 1

]
·

 5
−1
−14

 =
[
15 + 3− 14

]
=

[
4
]

The value 4 can be located in Table 3.4. Player 2 and player 3 will have to
calculate the Vandermonde tuple (3,−3, 1) with their own tuple from Table
3.3 in order to find their shares on the total polynomial.
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Appendix D
VIFF Distributed RSA Code

1 #!/ usr / bin /python

3 # Copyright 2007 , 2008 VIFF Development Team .
#

5 # This f i l e i s part o f VIFF , the Vi r tua l I d e a l Func t i ona l i t y
Framework .

#
7 # VIFF i s f r e e so f tware : you can r e d i s t r i b u t e i t and/ or modify

i t
# under the terms o f the GNU Lesse r General Publ ic L i cense (LGPL

) as
9 # publ i shed by the Free Software Foundation , e i t h e r v e r s i on 3 o f

the
# License , or ( at your opt ion ) any l a t e r v e r s i o n .

11 #
# VIFF i s d i s t r i b u t e d in the hope that i t w i l l be use fu l , but

WITHOUT
13 # ANY WARRANTY; without even the impl i ed warranty o f

MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesse r

General
15 # Publ ic L i cense f o r more d e t a i l s .

#
17 # You should have r e c e i v e d a copy o f the GNU Lesse r General

Publ ic
# License along with VIFF . I f not , s e e <http ://www. gnu . org /

l i c e n s e s />.
19

# This code can be used to generate shared RSA keys o f any
d e s i r e d

21 # length . The implementation i s based on the a lgor i thm desc r ibed
# in ” E f f i c i e n t Generation o f Shared RSA keys ” wr i t t en by

23 # Dan Boneh and Matthew Frankl in in 1997 .
#

25 # Some adjustments have been made , the f i r s t one found in the
s tep
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# ” Tr i a l d i v i s i o n ” , which i s s p e c i a l l y implemented f o r 3 p layers
,

27 # although i t can be be extended to a r b i t r a r y number o f p l ay e r s .
# The second change i s that the t r i a l d i v i s i o n f o r N i s f o r a

l a r g e r
29 # span than used in the a r t i c l e and a l s o that each p laye r checks

# d i f f e r e n t spans in s t ead o f a l l p l ay e r s check the same ones .
31 #

# Give a p layer c o n f i g u r a t i o n f i l e as a command l i n e argument or
run

33 # the example with ’−−help ’ f o r he lp with the command l i n e
opt ions .

35 # import the nece s sa ry modules
import random

37 import math
import gmpy

39 import time

41 from optparse import OptionParser
from twi s t ed . i n t e r n e t import r e a c t o r

43
from v i f f . f i e l d import GF

45 from v i f f . runtime import Runtime , c reate runt ime , ga the r share s ,
make runt ime c lass , Share

from v i f f . comparison import ComparisonToft07Mixin , Toft05Runtime
47 from v i f f . c o n f i g import l o a d c o n f i g

from v i f f . u t i l import rand , f i nd pr ime
49 from v i f f . e q u a l i t y import P r o b a b i l i s t i c E q u a l i t y M i x i n

51 # We s t a r t by d e f i n i n g the protoco l , i t w i l l be s t a r t e d at the
bottom

# of the f i l e .
53

c l a s s Protoco l :
55

# re tu rn s the l i s t o f primes l a r g e r than min and l e s s or
equal to max

57 de f ge t pr imes ( s e l f , min , max) :
primes = [ ]

59 whi l e True :
prime = i n t (gmpy . next pr ime (min ) )

61 i f prime <= max :
primes += [ prime ]

63 min = prime
e l s e :

65 re turn primes

67
# the func t i on f o r gene ra t ing a p r i v a t e part o f p f o r each

p laye r
69 de f genera te p ( s e l f ) :

s e l f . f unc t i on count [ 0 ] += 1
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71 # player 1 needs to obta in i t s share o f p as congruent
to 3 mod 4

i f s e l f . runtime . id == 1 :
73 s e l f . p = 4∗random . rand int (1 , s e l f . numer ic l ength −

1) + 3
# every other p laye r needs to obta in i t s share o f p as

congruent to 0 mod 4
75 e l s e :

s e l f . p = 4∗random . rand int (1 , s e l f . numer ic l ength −
1)

77
#p r i n t ”my p = ” + s t r ( s e l f . p )

79 s e l f . t r i a l d i v i s i o n p ( )

81
# the func t i on f o r gene ra t ing a p r i v a t e part o f q f o r each

player , equal to the corre spond ing func t i on f o r p
83 de f gene ra t e q ( s e l f ) :

s e l f . f unc t i on count [ 1 ] += 1
85 i f s e l f . runtime . id == 1 :

s e l f . q = 4∗random . rand int (1 , s e l f . numer ic l ength −
1) + 3

87 e l s e :
s e l f . q = 4∗random . rand int (1 , s e l f . numer ic l ength −

1)
89

#p r i n t ”my q = ” + s t r ( s e l f . q )
91 s e l f . t r i a l d i v i s i o n q ( )

93
# func t i on f o r doing shared t r i a l d i v i s i o n f o r smal l primes

on the choosen p
95 # a l t e r n a t i v e s tep to the step de s c r ibed in the a r t i c l e ,

with t h i s s o l u t i o n nothing i s r evea l ed
# check i f p i s composite f o r smal l primes ( done s e c r e t

shared )
97 # each p laye r choose a random number from Zp and t h i s number

along with i t s p r i v a t e p (mod the cur rent prime number
to be t e s t e d )

de f t r i a l d i v i s i o n p ( s e l f ) :
99 s e l f . f unc t i on count [ 2 ] += 1

# the func t i on i s done i t e r a t i v e , t h e r e f o r e the next
prime to be checked needs to be choosen

101 prime num = s e l f . p r i m e l i s t b 1 [ s e l f . p r ime po inte r ]
# c a l c u l a t e the remainder o f s e l f . p modulus the cur rent

prime number in the l i s t
103 p t r i a l = s e l f . p % prime num

#p r i n t ”my p t r i a l = ” + s t r ( p t r i a l ) + ” f o r prime num
= ” + s t r ( prime num )

105 r t r i a l = random . randint (1 , s e l f . Zp . modulus − 1)
#p r i n t ”my random r t r i a l = ” + s t r ( r t r i a l )

107
# share the va lue s
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109 p t r i a l 1 , p t r i a l 2 , p t r i a l 3 = s e l f . runtime . shamir share
( [ 1 , 2 , 3 ] , s e l f . Zp , p t r i a l )

p r t r i a l 1 , p r t r i a l 2 , p r t r i a l 3 = s e l f . runtime .
shamir share ( [ 1 , 2 , 3 ] , s e l f . Zp , r t r i a l )

111
# c a l c u l a t e the needed va lue s

113 p t r i a l t o t = ( p t r i a l 1 + p t r i a l 2 + p t r i a l 3 )
r t r i a l t o t = ( p r t r i a l 1 + p r t r i a l 2 + p r t r i a l 3 )

115 # the value to revea l , p t r i a l t o t i s the sum of each
p layer s ’ p r i v a t e p , r t r i a l t o t i s the sum of a
random number from each p laye r and prime num i s the
cur rent prime number to check

t r i a l r e v e a l = p t r i a l t o t ∗ ( p t r i a l t o t − prime num ) ∗
( p t r i a l t o t − 2 ∗ prime num ) ∗ r t r i a l t o t

117
# open the value o f the o p e n t r i a l r e v e a l share

119 o p e n t r i a l r e v e a l = s e l f . runtime . open ( t r i a l r e v e a l )
r e s u l t s = g a t h e r s h a r e s ( [ o p e n t r i a l r e v e a l ] )

121 # addCallback l e t s the program wait f o r the r e s u l t s to
be ready , then c a l l the func t i on given as the
argument

r e s u l t s . addCallback ( s e l f . c h e c k t r i a l d i v i s i o n p )
123

125 # revea l−f unc t i on that are c a l l e d from t r i a l d i v i s i o n p ( )
when the r e s u l t s are ready

# from the equat ion in t r i a l d i v i s i o n p ( ) t r i a l r e v e a l = p(p
− prime ) (p − 2∗prime ) ∗ r , i f prime d i v i d e s p , then s u r e l y
t h i s exp r e s s i on w i l l be zero f o r 3 p l a ye r s

127 # i f prime does NOT d iv ide p , then the r e s u l t r e t r i a l w i l l
be nothing but a random number , and r e v e a l s no
in fo rmat ion about the p layer s ’ p r i v a t e p

de f c h e c k t r i a l d i v i s i o n p ( s e l f , r e s u l t s ) :
129 s e l f . f unc t i on count [ 3 ] += 1

r e v t r i a l = r e s u l t s [ 0 ] . va lue
131 #pr in t ” r e v t r i a l = ” + s t r ( r e v t r i a l )

133 # i f prime d i v i d e s p , generate a new p and s t a r t over
i f r e v t r i a l == 0 :

135 s e l f . p r ime po in te r = 0
#p r i n t ” gene ra t ing p again ”

137 s e l f . g enera te p ( )
# i f not , check i f more primes are to be tes ted , i f yes ,

go back to t r i a l d i v i s i o n p ( ) , i f no , generate q
139 e l s e :

s e l f . p r ime po in te r += 1
141 # i f a l l the primes in the p r i m e l i s t b 1 i s te s ted ,

generate q
i f s e l f . p r ime po inte r >= len ( s e l f . p r i m e l i s t b 1 ) :

143 s e l f . p r ime po in te r = 0
s e l f . g ene ra t e q ( )

145 # e l s e , check f o r next prime in the l i s t
e l s e :

147 s e l f . t r i a l d i v i s i o n p ( )
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149
# t h i s func t i on i s equal to the corre spond ing func t i on f o r p

151 de f t r i a l d i v i s i o n q ( s e l f ) :
s e l f . f unc t i on count [ 4 ] += 1

153 prime num = s e l f . p r i m e l i s t b 1 [ s e l f . p r ime po inte r ]
q t r i a l = s e l f . q % prime num

155 #pr in t ”my q t r i a l = ” + s t r ( q t r i a l ) + ” f o r prime num
= ” + s t r ( prime num )

r t r i a l = random . randint (1 , s e l f . Zp . modulus − 1)
157 #pr in t ”my random r t r i a l = ” + s t r ( r t r i a l )

159 q t r i a l 1 , q t r i a l 2 , q t r i a l 3 = s e l f . runtime . shamir share
( [ 1 , 2 , 3 ] , s e l f . Zp , q t r i a l )

q r t r i a l 1 , q r t r i a l 2 , q r t r i a l 3 = s e l f . runtime .
shamir share ( [ 1 , 2 , 3 ] , s e l f . Zp , r t r i a l )

161
q t r i a l t o t = ( q t r i a l 1 + q t r i a l 2 + q t r i a l 3 )

163 r t r i a l t o t = ( q r t r i a l 1 + q r t r i a l 2 + q r t r i a l 3 )
t r i a l r e v e a l = q t r i a l t o t ∗ ( q t r i a l t o t − prime num ) ∗

( q t r i a l t o t − 2 ∗ prime num ) ∗ r t r i a l t o t
165

o p e n t r i a l r e v e a l = s e l f . runtime . open ( t r i a l r e v e a l )
167 r e s u l t s = g a t h e r s h a r e s ( [ o p e n t r i a l r e v e a l ] )

r e s u l t s . addCallback ( s e l f . c h e c k t r i a l d i v i s i o n q )
169

171 # t h i s func t i on i s equal to the cor re spond ing func t i on f o r p
u n t i l a q i s accepted so f a r

de f c h e c k t r i a l d i v i s i o n q ( s e l f , r e s u l t s ) :
173 s e l f . f unc t i on count [ 5 ] += 1

r e v t r i a l = r e s u l t s [ 0 ] . va lue
175 #pr in t ” r e v t r i a l = ” + s t r ( r e v t r i a l )

177 i f r e v t r i a l == 0 :
s e l f . p r ime po inte r = 0

179 #pr i n t ” gene ra t ing q again ”
s e l f . g ene ra t e q ( )

181 e l s e :
s e l f . p r ime po inte r += 1

183 # i f a l l the primes in the p r i m e l i s t b 1 i s te s ted ,
r e v e a l n

i f s e l f . p r ime po in te r >= len ( s e l f . p r i m e l i s t b 1 ) :
185 s e l f . p r ime po inte r = 0

187 p1 , p2 , p3 = s e l f . runtime . shamir share ( [ 1 , 2 ,
3 ] , s e l f . Zp , s e l f . p )

# c a l c u l a t e the t o t a l p as a share
189 s e l f . ptot = ( p1 + p2 + p3 )

191 q1 , q2 , q3 = s e l f . runtime . shamir share ( [ 1 , 2 ,
3 ] , s e l f . Zp , s e l f . q )

# c a l c u l a t e the t o t a l q as a share
193 s e l f . qtot = ( q1+ q2 + q3 )
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195 # c a l c u l a t e and open the RSA−modulus N
n = s e l f . ptot ∗ s e l f . qtot

197 open n = s e l f . runtime . open (n)

199 # FOR DEBUGGING ONLY
#open ptot = s e l f . runtime . open ( s e l f . ptot )

201 #open qtot = s e l f . runtime . open ( s e l f . qtot )
# END DEBUGGING ONLY

203
r e s u l t s = g a t h e r s h a r e s ( [ open n ] ) #, open ptot ,

open qtot ] ) # LAST TWO FOR DEBUGGING ONLY
205 r e s u l t s . addCallback ( s e l f . check n )

# e l s e , check f o r next prime in the l i s t
207 e l s e :

s e l f . t r i a l d i v i s i o n q ( )
209

211
# func t i on to save the r evea l ed N and the shared value o f

phi , p lus do u s e f u l debugging p r i n t o u t s
213 de f check n ( s e l f , r e s u l t s ) :

s e l f . f unc t i on count [ 6 ] += 1
215 #pr in t ”n = ” + s t r ( r e s u l t s [ 0 ] )

217 s e l f . n r evea l ed = r e s u l t s [ 0 ] . va lue
s e l f . phi = ( s e l f . ptot − 1) ∗ ( s e l f . qtot − 1)

219 #pr in t ” completed rounds : ” + s t r ( s e l f . completed rounds )
+ ” / ” + s t r ( s e l f . rounds )

#p r i n t ”\ nn revea l ed = ” + s t r ( s e l f . n r evea l ed )
221

# FOR DEBUGGING ONLY
223 #pr in t ” p r evea l ed = ” + s t r ( r e s u l t s [ 1 ] . va lue )

#p r i n t ” q r ev ea l e d = ” + s t r ( r e s u l t s [ 2 ] . va lue )
225 # END DEBUGGING ONLY

227 #pr in t ”#b i t s in N = ” + s t r (math . c e i l (math . l og ( s e l f .
n revea l ed , 2) ) )

229 s e l f . p r i m a l i t y t e s t N ( )

231 # func t i on f o r more p r ima l i t y t e s t i n g on p and q
# the pr ima l i t y t e s t i n g f o r N can be done very qu i ck ly

l o c a l l y f o r each p layer s i n c e N i s a r evea l ed value
233 # each p laye r checks N f o r d i f f e r e n t i n t e r v a l s ( in

p r i m e l i s t b 2 ) f o r program speed up
de f p r i m a l i t y t e s t N ( s e l f ) :

235 s e l f . f unc t i on count [ 7 ] += 1
# assume that the p r ima l i t y t e s t w i l l not f a i l

237 t e s t f a i l e d = 0
f o r i in s e l f . p r i m e l i s t b 2 :

239 #pr i n t ”N mod ” + s t r ( i ) + ” = ” + s t r ( s e l f .
n r evea l ed % i )
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# i f the cur rent prime in the l i s t d i v i d e s N, t h i s
means that N has a f a c t o r equal to t h i s prime ,
s i n c e t h i s f a c t o r i s smal l ( in comparison to the
value o f p , q and N) , t h i s means that N i s not
the product o f two l a r g e primes p and q

241 i f s e l f . n r evea l ed % i == 0 :
#p r i n t ” f a i l e d . . . ” + s t r ( i ) + ” d i v i d e s ” + s t r

( s e l f . n r evea l ed )
243 t e s t f a i l e d = 1

break
245

# share the va lue s
247 f a i l e d 1 , f a i l e d 2 , f a i l e d 3 = s e l f . runtime . shamir share

( [ 1 , 2 , 3 ] , s e l f . Zp , t e s t f a i l e d )

249 # c a l c u l a t e and open the sum of f a i l e d va lue s
f a i l e d t o t = f a i l e d 1 + f a i l e d 2 + f a i l e d 3

251 o p e n f a i l e d t o t = s e l f . runtime . open ( f a i l e d t o t )

253 r e s u l t s = g a t h e r s h a r e s ( [ o p e n f a i l e d t o t ] )
r e s u l t s . addCallback ( s e l f . c h e c k p r i m a l i t y t e s t N )

255

257 # func t i on f o r check ing the p r ima l i t y t e s t f o r N
de f c h e c k p r i m a l i t y t e s t N ( s e l f , r e s u l t s ) :

259 s e l f . f unc t i on count [ 8 ] += 1
# i f each p layer has checked through i t s whole l i s t o f

primes , but none d i v i d e s N, p and q are so f a r
accepted

261 i f r e s u l t s [ 0 ] . va lue == 0 :
#p r i n t ” p r ima l i t y t e s t f o r N i s OK, generate g”

263 s e l f . g ene ra t e g ( )
# i f the r e s u l t s are not 0 , then or or more o f the

p l ay e r s have d i s cove r ed a f a c t o r f o r N that i s not p
or q , s t a r t the whole p roce s s from s t a r t with
gene ra t ing p

265 e l s e :
#p r i n t ” p r ima l i t y t e s t f o r N f a i l e d , s t a r t

gene ra t ing p”
267 s e l f . g enera te p ( )

269
# func t i on f o r ag ree ing on a random chosen g

271 de f gene ra t e g ( s e l f ) :
s e l f . f unc t i on count [ 9 ] += 1

273 # player 1 chooses a random number in the i n t e r v a l [ 1 , N
−1] and share s i t with the other p l aye r s

i f s e l f . runtime . id == 1 :
275 s e l f . g = random . rand int (1 , s e l f . n r evea l ed − 1)

#p r i n t ”g = ” + s t r ( s e l f . g )
277 s e l f . g = s e l f . runtime . shamir share ( [ 1 ] , s e l f . Zp ,

s e l f . g )
e l s e :
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279 # no input to the shamir share means that t h i s
p laye r has no value to share , but ge t s a value o f
what i s shared ( by p laye r 1)

s e l f . g = s e l f . runtime . shamir share ( [ 1 ] , s e l f . Zp)
281

s e l f . open g = s e l f . runtime . open ( s e l f . g )
283 r e s u l t s = g a t h e r s h a r e s ( [ s e l f . open g ] )

r e s u l t s . addCallback ( s e l f . check g )
285

287 # func t i on f o r d i s t r i b u t e d b i p r i m a l i t y t e s t , check that the
j a c o b i symbol o f g i s equal to 1 , i f yes , c a l c u l a t e v

de f check g ( s e l f , r e s u l t s ) :
289 s e l f . f unc t i on count [ 1 0 ] += 1

#p r i n t ”g = ” + s t r ( r e s u l t s [ 0 ] . va lue )
291 s e l f . g = r e s u l t s [ 0 ] . va lue

# c a l c u l a t e the j a c o b i symbol o f ( g/N)
293 j a c o b i = gmpy . j a c o b i ( s e l f . g , s e l f . n r evea l ed ) % s e l f .

n r evea l ed
#p r i n t ” j a c o b i = ” + s t r ( j a c o b i )

295 # i f the j a c o b i va lue i s equal to 1 , then c a l c u l a t e v
i f j a c o b i == 1 :

297 # c a l c u l a t e the v ’ s
i f s e l f . runtime . id == 1 :

299 # c a l c u l a t e p laye r 1 ’ s p r i v a t e part o f phi (N −
p1 − q1 + 1)

s e l f . p h i i = s e l f . n r evea l ed − s e l f . p − s e l f . q +
1

301 #s e l f . v = s e l f . g ∗∗ ( ( s e l f . n r evea l ed − s e l f . p −
s e l f . q + 1) / 4) % s e l f . n r evea l ed

base = gmpy . mpz( s e l f . g )
303 power = gmpy . mpz( s e l f . p h i i / 4)

modulus = gmpy . mpz( s e l f . n r evea l ed )
305 s e l f . v = i n t (pow( base , power , modulus ) )

#s e l f . v = s e l f . powermod ( s e l f . g , ( s e l f . n r evea l ed
− s e l f . p − s e l f . q + 1) / 4 , s e l f . n r evea l ed )

307 e l s e :
# c a l c u l a t e every other p layers ’ p r i v a t e part o f

phi −(p i + q i ) f o r p laye r i
309 s e l f . p h i i = −( s e l f . p + s e l f . q )

# the func t i on gmpy . divm (1 , a , b ) c a l c u l a t e s the
i n v e r s e o f a mod b

311 s e l f . i n v e r s e v = i n t (gmpy . divm (1 , s e l f . g , s e l f .
n r evea l ed ) )

313 base = gmpy . mpz( s e l f . i n v e r s e v )
power = gmpy . mpz(− s e l f . p h i i / 4)

315 modulus = gmpy . mpz( s e l f . n r evea l ed )
s e l f . v = i n t (pow( base , power , modulus ) )

317
#p r i n t ” s e l f . p h i i = ” + s t r ( s e l f . p h i i )

319 # i f the j a c o b i va lue i s not 1 , then choose generate a
new g

e l s e :
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321 s e l f . g ene ra t e g ( )
re turn

323
#p r i n t ” s e l f . v = ” + s t r ( s e l f . v )

325
# share the v ’ s ( a l r eady mod N)

327 v1 , v2 , v3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .
Zp , s e l f . v )

329 # c a l c u l a t e the t o t a l v
v t o t = v1 ∗ v2 ∗ v3

331 s e l f . open v = s e l f . runtime . open ( v t o t )
r e s u l t s = g a t h e r s h a r e s ( [ s e l f . open v ] )

333 #pr in t ”GIKK GREIT MED GATHER SHARES”
r e s u l t s . addCallback ( s e l f . check v )

335

337 # func t i on f o r check ing f o r a v a l i d v
de f check v ( s e l f , r e s u l t s ) :

339 s e l f . f unc t i on count [ 1 1 ] += 1
# the r e s u l t i n g v i s a l s o c a l c u l a t e d mod N

341 v = r e s u l t s [ 0 ] . va lue % s e l f . n r evea l ed
#p r i n t ”v = ” + s t r ( v )

343
# i f v i s equal to 1/−1 mod N, go to the next step ,

gene ra t ing z
345 i f v == 1 or v == s e l f . n r evea l ed − 1 :

s e l f . g en e r a t e z ( )
347 # e l s e , the d i s t r i b u t e d b i p r i m a l i t y t e s t f a i l e d , s t a r t

a l l over with genera t ing p
e l s e :

349 s e l f . p r ime po inte r = 0
s e l f . g ene ra te p ( )

351

353 # func t i on f o r the 4 th step in the d i s t r i b u t e d b i p r i m a l i t y
t e s t −−> the a l t e r n a t i v e s tep de s c r ibed

de f g en e r a t e z ( s e l f ) :
355 s e l f . f unc t i on count [ 1 2 ] += 1

# each p laye r generate a random number
357 s e l f . r z = random . randint (1 , s e l f . n r evea l ed − 1)

# the random numbers are shared
359 r1 , r2 , r3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .

Zp , s e l f . r z )
z = ( r1 + r2 + r3 ) ∗ (−1 + ( s e l f . ptot + s e l f . qtot ) )

361
s e l f . open z = s e l f . runtime . open ( z )

363 r e s u l t s = g a t h e r s h a r e s ( [ s e l f . open z ] )
r e s u l t s . addCallback ( s e l f . check z )

365

367 # func t i on f o r check ing that gcd ( z , N) i s equal to 1
de f check z ( s e l f , r e s u l t s ) :

369 s e l f . f unc t i on count [ 1 3 ] += 1
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z = r e s u l t s [ 0 ] . va lue % s e l f . n r evea l ed
371 #pr in t ” z = ” + s t r ( z )

373 # c a l c u l a t e the gcd o f z and N
z n = gmpy . gcd ( z , s e l f . n r evea l ed )

375 # i f the gcd i s equal to 1 , then the d i s t r i b u t e d
b i p r i m a l i t y t e s t i s passed

i f z n == 1 :
377 #pr i n t ” gcd ( z , N) = 1 , s t a r t gene ra t ing e , d”

# choos ing the RSA pub l i c exponent e , a prime c l o s e
to a power o f two i s o f t en chosen , 2ˆ16 + 1 =
65537 i s very o f t en used

379 s e l f . e = 2∗∗16 + 1
#s e l f . e = 17

381 #pr i n t ” e = ” + s t r ( s e l f . e )
s e l f . g e n e r a t e l ( )

383 #s e l f . g e n e r a t e p s i ( )

385 # e l s e the d i s t r i b u t e d b i p r i m a l i t y t e s t has f a i l e d , and
the whole p ro to co l i s s t a r t e d again by gene ra t ing new
p and q ’ s

e l s e :
387 #pr i n t ” gcd ( z , N) != 1 , r e s t a r t with gene ra t ing p”

s e l f . p r ime po in te r = 0
389 s e l f . g enera te p ( )

391
# func t i on f o r gene ra t ing l , used to f i n d i n g the p r i v a t e

exponent d
393 # by a r r i v i n g at t h i s func t i on p and q are found to be

primes , and only a shared d i s needed
de f g e n e r a t e l ( s e l f ) :

395 s e l f . f unc t i on count [ 1 4 ] += 1
# every p laye r c a l c u l a t e s h i s / her p r i v a t e p h i i mod e (

pub l i c exponent )
397 s e l f . l = s e l f . p h i i % s e l f . e

p r i n t ”\n\nPRIVATE VARIABLES”
399 pr i n t ” s e l f . l = ” + s t r ( s e l f . l )

# share the l ’ s and c a l c u l a t e the t o t a l l
401 l1 , l2 , l 3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .

Zp , s e l f . l )
l t o t = l 1 + l 2 + l 3

403
o p e n l t o t = s e l f . runtime . open ( l t o t )

405 r e s u l t s = g a t h e r s h a r e s ( [ o p e n l t o t ] )
r e s u l t s . addCallback ( s e l f . g enera te d )

407

409 # func t i on f o r gene ra t ing the p r i v a t e exponent d , each
p laye r end up with a p r i v a t e part o f the t o t a l d

de f genera te d ( s e l f , r e s u l t s ) :
411 s e l f . f unc t i on count [ 1 5 ] += 1

# c a l c u l a t e the t o t a l l mod e
413 l t o t = r e s u l t s [ 0 ] . va lue % s e l f . e
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#p r i n t ” l t o t = ” + s t r ( l t o t )
415

# check that t o t a l l i s i n v e r t a b l e mod e
417 try :

ze ta = gmpy . divm (1 , l t o t , s e l f . e ) # CHECK IF
INVERTABLE

419 except :
# i f not i nve r tab l e , the p ro to co l needs to be

s t a r t e d a l l over
421 # not i n v e r t a b l e o f t en means badly chosen ’ e ’

p r i n t ” not i n v e r t a b l e mod e ”
423 s e l f . g enera te p ( )

425 #pr in t ” zeta ( inv ) = ” + s t r ( ze ta )

427 # c a l c u l a t e t h i s p layer ’ s p r i v a t e d , rounded down , t h i s
means i t ’ s not e n t i r e l y co r r e c t , but c o r r e c t e d l a t e r

s e l f . d = i n t ( − ( ze ta ∗ s e l f . p h i i ) / s e l f . e )
429 p r i n t ” s e l f . p = ” + s t r ( s e l f . p )

p r i n t ” s e l f . q = ” + s t r ( s e l f . q )
431 p r i n t ” s e l f . d = ” + s t r ( s e l f . d )

p r i n t ”N ( pub l i c ) = ” + s t r ( s e l f . n r evea l ed )
433 p r i n t ” Total b i t s in N = ” +s t r (math . l og ( s e l f . n revea l ed

, 2) )

435 # c a l c u l a t e t h i s p layer ’ s c , which i s used to c o r r e c t
the d with a t r i a l decrypt ion

base = gmpy . mpz( s e l f .m)
437 power = gmpy . mpz( s e l f . e )

modulus = gmpy . mpz( s e l f . n r evea l ed )
439 s e l f . c = i n t (pow( base , power , modulus ) )

441 # the wanted value to c a l c u l a t e i s t h i s p layer ’ s cˆ d i
mod N, but p layer 1 ’ s ’d ’ i s negat ive , t h e r e f o r e f i n d

the i n v e r s e o f p laye r 1 ’ s c mod N, and use that
in s t ead

i f s e l f . runtime . id == 1 :
443 s e l f . c = gmpy . divm (1 , s e l f . c , s e l f . n r evea l ed )

base = gmpy . mpz( s e l f . c )
445 i f s e l f . runtime . id == 1 :

power = gmpy . mpz(− s e l f . d )
447 e l s e :

power = gmpy . mpz( s e l f . d )
449 modulus = gmpy . mpz( s e l f . n r evea l ed )

# decrypt = cˆ d i mod N
451 s e l f . decrypt = i n t (pow( base , power , modulus ) )

#p r i n t ” s e l f . decrypt ( cˆ d i mod N) = ” + s t r ( s e l f . decrypt
)

453
# each p laye r share i t s c = s e l f . decrypt

455 c1 , c2 , c3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .
Zp , s e l f . decrypt )

457 open c1 = s e l f . runtime . open ( c1 )
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open c2 = s e l f . runtime . open ( c2 )
459 open c3 = s e l f . runtime . open ( c3 )

461 r e s u l t s = g a t h e r s h a r e s ( [ open c1 , open c2 , open c3 ] )
r e s u l t s . addCallback ( s e l f . check decrypt )

463
de f check decrypt ( s e l f , r e s u l t s ) :

465 s e l f . f unc t i on count [ 1 6 ] += 1
# player 3 i s r e s p o n s i b l e f o r the t r i a l decrypt ion ,

mostly because p layer 1 has a negat ive d and that
means more c a l c u l a t i o n s i f p laye r 1 i s suppose to do
the task

467 i f s e l f . runtime . id == 3 :
c1 = r e s u l t s [ 0 ] . va lue

469 c2 = r e s u l t s [ 1 ] . va lue
c3 = r e s u l t s [ 2 ] . va lue

471
# the adjustment i s at most n−1, f o r three p l a ye r s

t h i s means max 2
473 f o r i in range (0 , 3 ) :

# c a l c u l a t e the temp decrypt
475 tmp decrypt = c1 ∗ c2 ∗ c3 % s e l f . n r evea l ed #

s e l f . c∗∗ s e l f . r ∗ c1 ∗ c2 ∗ c3 % s e l f .
n r evea l ed

p r in t ” Decryption = ” + s t r ( tmp decrypt )
477 # check i f t h i s va lue i s the c o r r e c t va lue

i f ( tmp decrypt == s e l f .m) :
479 p r i n t ”d found , with +r = ” + s t r ( i )

# i f i t i s , c o r r e c t d e c r y p t i o n s i s i n c r e a s e d
481 s e l f . c o r r e c t d e c r y p t i o n s += 1

pr in t ” Correct dec rypt i ons : ” + s t r ( s e l f .
c o r r e c t d e c r y p t i o n s ) + ” / ” + s t r ( s e l f .
rounds )

483 break
e l s e :

485 # i f not , p laye r 3 ’ s d i s i n c r e a s e d by 1 and
c3 i s r e c a l c u l a t e d be f o r e the next

i t e r a t i o n o f the for−loop i s done
s e l f . d += 1

487 base = gmpy . mpz( s e l f . c )
power = gmpy . mpz( s e l f . d )

489 modulus = gmpy . mpz( s e l f . n r evea l ed )
c3 = i n t (pow( base , power , modulus ) )

491
# time2 i s s e t to c a l c u l a t e the t o t a l time f o r the

gene ra t i on o f t h i s v a l i d key
493 s e l f . time2 = time . c l o ck ( )

# completed rounds i s i n c r e a s e d in case o f more rounds
495 s e l f . completed rounds += 1

pr in t ”Completed rounds : ” + s t r ( s e l f . completed rounds )
+ ” / ” + s t r ( s e l f . rounds )

497 # the time f o r f i n d i n g the cur rent key i s saved in the
t imes v a r i a b l e

s e l f . t imes += [ s e l f . time2 − s e l f . time1 ]
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499 # check i f a l l the key gene ra t i on rounds are f i n i s h e d
i f s e l f . completed rounds == s e l f . rounds :

501 # i f so , p r i n t the datas from the gene ra t i on s
p r i n t ”\n\nBENCHMARKS FOR VALID KEY GENERATION”

503 p r in t ” t imes = ” + s t r ( s e l f . t imes )
p r i n t ” Average : ” + s t r (sum( s e l f . t imes ) / ( s e l f .

rounds ) )
505 p r in t ” Correct dec rypt i ons : ” + s t r ( s e l f .

c o r r e c t d e c r y p t i o n s ) + ” / ” + s t r ( s e l f . rounds )
p r i n t ”\n”

507 f o r i in range ( l en ( s e l f . f unc t i on count ) ) :
p r i n t s t r ( s e l f . funct ion count names [ i ] ) + ” : ” +

s t r ( s e l f . f unc t i on count [ i ] ) + ” , avg : ” +
s t r ( i n t ( s e l f . f unc t i on count [ i ] / s e l f . rounds )
)

509 # t e s t i f the program i s suppose to do
decryption benchmark as we l l

i f s e l f . decrypt benchmark act ive == True :
511 s e l f . decrypt benchmark ( )

re turn
513 e l s e :

# the p ro to co l i s f i n i s h e d , synchron ize the
shutdown

515 s e l f . runtime . shutdown ( )
e l s e :

517 # more key gene ra t i on s h a l l be done , r e s e t the
parameters f o r a new round and s t a r t the p ro to co l

again from genera te p ( )
s e l f . p r ime po inte r = 0

519 s e l f . d e c r y p t t r i e s = 0
s e l f . time1 = time . c l o ck ( )

521 s e l f . g enera te p ( )

523
# func t i on f o r benchmarking the decrypt ion time f o r a v a l i d

key
525 # the method i s to choose a message ’m’ , c a l c u l a t e the

c iphe r c = mˆe mod N, then f i n d each player ’ s part o f the
message mi = cˆ di mod N

def decrypt benchmark ( s e l f ) :
527 # s t a r t the c l o ck f o r time benchmark

s e l f . decrypt t ime1 = time . c l o ck ( )
529

# c a l c u l a t e t h i s p layer ’ s c iphe r c
531 base = gmpy . mpz( s e l f .m)

power = gmpy . mpz( s e l f . e )
533 modulus = gmpy . mpz( s e l f . n r evea l ed )

s e l f . c = i n t (pow( base , power , modulus ) )
535

# s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e
537 i f s e l f . runtime . id == 1 :

s e l f . c = gmpy . divm (1 , s e l f . c , s e l f . n r evea l ed )
539 base = gmpy . mpz( s e l f . c )

i f s e l f . runtime . id == 1 :
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541 power = gmpy . mpz(− s e l f . d )
e l s e :

543 power = gmpy . mpz( s e l f . d )

545 modulus = gmpy . mpz( s e l f . n r evea l ed )
# c a l c u l a t e t h i s p layer ’ s mi = cˆ d i mod N

547 s e l f . decrypt = i n t (pow( base , power , modulus ) )

549 # share the va lue s
c1 , c2 , c3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .

Zp , s e l f . decrypt )
551

# c a l c u l a t e the t o t a l c and open
553 c t o t = c1 ∗ c2 ∗ c3

open c to t = s e l f . runtime . open ( c t o t )
555

r e s u l t s = g a t h e r s h a r e s ( [ open c to t ] )
557 r e s u l t s . addCallback ( s e l f . check decrypt benchmark )

559
# func t i on f o r check ing the r e s u l t s from the decrypt ion

benchmark
561 de f check decrypt benchmark ( s e l f , r e s u l t s ) :

# the o f f s e t o f the t o t a l d i s o f f by at most n−1,
i t e r a t e through a l l p o s s i b l e va lue s

563 f o r i in range (0 , 3 ) :
# c a l c u l a t e a tmp decrypt

565 tmp decrypt = r e s u l t s [ 0 ] . va lue % s e l f . n r evea l ed
# check i f t h i s i s equal to the o r i g i n a l message

567 i f tmp decrypt == s e l f .m:
# i f so , stop the c l o ck

569 s e l f . decrypt t ime2 = time . c l o ck ( )
# update the number o f decrypt t r i e s and save

the time used f o r the cur rent decrypt ion
571 s e l f . d e c r y p t t r i e s += 1

s e l f . dec rypt t imes += [ s e l f . decrypt t ime2 − s e l f
. decrypt t ime1 ]

573 #p r in t ” c o r r e c t decrypt ion f o r m = ” + s t r ( s e l f .
m)

575 # check i f more decrypt ion benchmarks i s suppose
to be done

i f s e l f . d e c r y p t t r i e s < s e l f . decrypt rounds :
577 # i f yes , update the o r i g i n a l message to not

repeat decrypt ion f o r the same message ’
m’ every time

s e l f .m += 1
579 # go back to the decrypt benchmark ( ) f o r a

new round
s e l f . decrypt benchmark ( )

581 return
e l s e :

583 # pr i n t some u s e f u l output from the
benchmark
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pr in t ”\n\nBENCHMARK FOR DECRYPTION”
585 pr i n t ” t imes = ” + s t r ( s e l f . dec rypt t imes )

p r i n t ” average decrypt time = ” + s t r (sum(
s e l f . dec rypt t imes ) / s e l f . decrypt rounds
)

587 # the p ro to co l i s f i n i s h e d , synchron ize the
shutdown

s e l f . runtime . shutdown ( )
589 return

591
# func t i on f o r d i s t r i b u t e d decrypt ion o f an a r b i t r a r y

c i p h e r t e x t
593 # the p l aye r s needs to have a shared key f o r t h i s func t i on

to work
# each p laye r c a l c u l a t e s m i and share s the va lue s to obta in

the message M
595 de f decrypt ion ( s e l f , c i p h e r t e x t ) :

# s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e
597 i f s e l f . runtime . id == 1 :

c i p h e r t e x t = gmpy . divm (1 , c iphe r t ex t , s e l f .
n r evea l ed )

599 base = gmpy . mpz( c i p h e r t e x t )

601 i f s e l f . runtime . id == 1 :
power = gmpy . mpz(− s e l f . d )

603 e l s e :
power = gmpy . mpz( s e l f . d )

605
modulus = gmpy . mpz( s e l f . n r evea l ed )

607 m i = i n t (pow( base , power , modulus ) )

609 m1, m2, m3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .
Zp , m i )

m tot = m1 ∗ m2 ∗ m3
611 open m tot = s e l f . runtime . open ( m tot )

613 r e s u l t s = g a t h e r s h a r e s ( [ open m tot ] )
r e s u l t s . addCallback ( s e l f . check dec rypt ion )

615

617 # func t i on f o r r e v e a l i n g the p l a i n t e x t from decrypt ing the
c i p h e r t e x t

de f check dec rypt ion ( s e l f , r e s u l t s ) :
619 message = r e s u l t s [ 0 ] . va lue % s e l f . n r evea l ed

p r in t ”\ nDecryption o f c i p h e r t e x t y i e l d s M = ” + s t r (
message )

621

623 # func t i on f o r d i s t r i b u t e d s i g n a t u r e o f an a r b i t r a r y message
# the p l ay e r s needs to have a shared key f o r t h i s func t i on

to work
625 # s i g n a t u r e i s c a r r i e d out by us ing the shared ’d ’ to

encrypt a message
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# each p laye r c a l c u l a t e s c i and share s the va lue s to obta in
the s i g n a t u r e C

627 de f s i g n a t u r e ( s e l f , message ) :
# s i n c e p layer 1 ’ s d i s negat ive , f i n d the i n v e r s e

629 i f s e l f . runtime . id == 1 :
message = gmpy . divm (1 , message , s e l f . n r evea l ed )

631 base = gmpy . mpz( message )

633 i f s e l f . runtime . id == 1 :
power = gmpy . mpz(− s e l f . d )

635 e l s e :
power = gmpy . mpz( s e l f . d )

637
modulus = gmpy . mpz( s e l f . n r evea l ed )

639 c i = i n t (pow( base , power , modulus ) )

641 c1 , c2 , c3 = s e l f . runtime . shamir share ( [ 1 , 2 , 3 ] , s e l f .
Zp , c i )

c t o t = c1 ∗ c2 ∗ c3
643 open c to t = s e l f . runtime . open ( c t o t )

645 r e s u l t s = g a t h e r s h a r e s ( [ open c to t ] )
r e s u l t s . addCallback ( s e l f . ch e ck s i gna t u r e )

647

649 # func t i on f o r r e v e a l i n g the c a l c u l a t e d s i g n a t u r e C o f a
g iven message M

def che ck s i gna t u r e ( s e l f , r e s u l t s ) :
651 s i g n a t u r e = r e s u l t s [ 0 ] . va lue % s e l f . n r evea l ed

p r in t ”\ nSignature f o r message M i s C = ” + s t r (
s i g n a t u r e )

653

655 # func t i on that s t a r t s the shared RSA pro to co l
de f i n i t ( s e l f , runtime ) :

657
# CHANGEABLE VARIABLES

659 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

661 # rounds are the t o t a l number o f rounds to be run f o r
benchmark

s e l f . rounds = 1
663 # s e t True to do decrypt ion benchmark , Fa l se to drop

t h i s benchmark
s e l f . decrypt benchmark act ive = True

665 # The number o f decrypt ion rounds to be performed i f
a c t i v e

s e l f . decrypt rounds = 20
667 # the number o f b i t s in N ( meaning p and q are b i t s N /

2 each )
s e l f . b i t s N = 64

669
# m i s the message used to check f o r c o r r e c t decrypt ion

671 s e l f .m = 2
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673 # the lower l i m i t f o r p r ima l i t y t e s t i n g , t e s t i n g done
s e c r e t shared

s e l f . bound1 = 12
675 # the l i m i t s f o r p r ima l i t y t e s t i n g o f N, done l o c a l l y

with d i f f e r e n t boundar ies f o r each p layer
# more e f f i c i e n t to l e t p laye r 1 check l a r g e r span ,

s t a t i s t i c a l l y p laye r 1 w i l l f a i l most o f t en
677 s e l f . bound2 p1 = 15000 # 12−15000 = 1749 primes

s e l f . bound2 p2 = 17500 # 15000−17500 = 260 primes
679 s e l f . bound2 p3 = 20000 # 17500−20000 = 253 primes

681
# VARIABLES NOT TO BE CHANGED

683 #∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

685 # time1 and time2 i s used to measure the t o t a l time o f
gene ra t ing a key

s e l f . time1 = time . c l o ck ( )
687 s e l f . time2 = 0

# completed rounds are used when running keygenerat ion
s e v e r a l t imes f o r benchmarking

689 s e l f . completed rounds = 0
# times are the t imes from each round in key gene ra t i on

691 s e l f . t imes = [ ]
# c o r r e c t d e c r y p t i o n s are used to sum up the t o t a l

number o f c o r r e c t dec rypt i ons when benchmarking key
gene ra t i on

693 # i f p r in tout show that c o r r e c t d e c r y p t i o n s i s not equal
to the t o t a l number o f rounds , the p ro to co l i s

f lawed
s e l f . c o r r e c t d e c r y p t i o n s = 0

695
# decrypt t ime1 /2 i s used to measure the time f o r

decrypt ion benchmark
697 s e l f . decrypt t ime1 = 0

s e l f . decrypt t ime2 = 0
699 # decrypt t imes are the t imes from each round in the

decrypt benchmark
s e l f . dec rypt t imes = [ ]

701
#s e l f . completed decrypt = 0

703
# completed decrypt i s used to count the number o f

dec rypt i ons done u n t i l now in decrypt ion benchmark
705 s e l f . d e c r y p t t r i e s = 0

707 # Save the Runtime f o r l a t e r use
s e l f . runtime = runtime

709
# b i t l e n g t h i s the number o f b i t s in p and q ( c o r r e c t

f o r 3 p l a ye r s )
711 s e l f . b i t l e n g t h = i n t ( s e l f . b i t s N / 2) − 2
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# numer ic l ength i s the used to generate a numeric va lue
based on a c e r t a i n number o f b i t s and i s d iv ided by

4 because o f the way p and q are choosen l a t e r
713 s e l f . numer ic l ength = i n t ((2∗∗ s e l f . b i t l e n g t h ) / 4)

715 # p r i m e l i s t b 1 i s the l i s t o f primes that are checked
s e c r e t shared

s e l f . p r i m e l i s t b 1 = s e l f . g e t pr imes (2 , s e l f . bound1 )
717

# p r i m e l i s t b 2 i s the l i s t o f primes that are checked
l o c a l l y by each player , and i s t h e r e f o r e d i f f e r e n t
f o r each p laye r

719 i f s e l f . runtime . id == 1 :
s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes ( s e l f . bound1 ,

s e l f . bound2 p1 )
721 e l i f s e l f . runtime . id == 2 :

s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes ( s e l f . bound2 p1 ,
s e l f . bound2 p2 )

723 e l s e :
s e l f . p r i m e l i s t b 2 = s e l f . g e t pr imes ( s e l f . bound2 p2 ,

s e l f . bound2 p3 )
725

#p r i n t s e l f . p r i m e l i s t b 1
727 p r i n t ” l ength o f l i s t b2 = ” + s t r ( l en ( s e l f .

p r i m e l i s t b 2 ) )

729 # pr ime po in te r i s used to po int to the r i g h t prime
number in the l i s t at a l l t imes

s e l f . p r ime po in te r = 0
731

# l i s t used f o r debugging how many times each func t i on
i s run

733 #
s e l f . f unc t i on count =

[ 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]
735 s e l f . funct ion count names = [ ” genera te p ” , ” gene ra te q ” ,

” t r i a l d i v i s i o n p ” , ” c h e c k t r i a l d i v i s i o n p ” , ”
t r i a l d i v i s i o n q ” , ” c h e c k t r i a l d i v i s i o n q ” , ” check n
” , ” p r i m a l i t y t e s t N ” , ” c h e c k p r i m a l i t y t e s t N ” , ”
gene ra t e g ” , ” check g ” , ” check v ” , ” g en e r a t e z ” , ”
check z ” , ” g e n e r a t e l ” , ” genera te d ” , ” check decrypt
” ]

737 # l needs to be l a r g e enough to cope with a l l p o s s i b l e
numbers that appear in the program during execut ion

# i f t h i s va lue i s too small , the va lue s could wrap
around the value o f Zp . modulus and g ive bogus outputs

739 l = i n t ( s e l f . b i t s N ∗ 3 . 5 )
k = runtime . opt ions . s e cu r i ty pa ramete r

741
# For the comparison p ro to co l to work , we need a f i e l d

modulus
743 # b igge r than 2∗∗( l +1) + 2∗∗( l+k+1) , where the b i t

l ength o f
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# the input numbers i s l and k i s the s e c u r i t y parameter
.

745 # Further more , the prime must be a Blum prime ( a prime
p such

# that p % 4 == 3 holds ) . The f ind pr ime func t i on l e t s
us f i n d

747 # a s u i t a b l e prime .
s e l f . Zp = GF( f ind pr ime (2∗∗ ( l + 1) + 2∗∗( l + k + 1) ,

blum=True ) )
749

#p r i n t s e l f . Zp . modulus
751

# s t a r t the p ro to co l by each p laye r gene ra t ing i t s own
p r i v a t e va lue f o r p

753 s e l f . g enera te p ( )

755
# Parse command l i n e arguments .

757 par s e r = OptionParser ( )
Runtime . add opt ions ( par s e r )

759 opt ions , a rgs = par s e r . p a r s e a r g s ( )

761 i f l en ( args ) == 0 :
par s e r . e r r o r (” you must s p e c i f y a c o n f i g f i l e ”)

763 e l s e :
id , p l ay e r s = l o a d c o n f i g ( args [ 0 ] )

765
# Create a d e f e r r e d Runtime and ask i t to run our p ro to co l when

ready .
767 #pre runt ime = crea te runt ime ( id , p layer s , 1 , opt ions ,

Toft05Runtime )
r u n t i m e c l a s s = make runt ime c lass ( mixins =[ComparisonToft07Mixin

] )
769 pre runt ime = crea te runt ime ( id , p layer s , 1 , opt ions ,

r u n t i m e c l a s s )
pre runt ime . addCallback ( Protoco l )

771
# Star t the Twisted event loop .

773 r e a c t o r . run ( )
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Appendix E
GMPY

The General Multiprecision PYthon project focuses on Python-usable mod-
ules providing multiprecision arithmetic functionality to Python program-
mers. GMPY supports all kinds of mathematical functions, written in the
programming language C for optimization, in an easy-to-use fashion, and
GMPY has been used extensively throughout the implementation of dis-
tributed RSA in VIFF. For more information about GMPY see [GMP03],
and for where to download GMPY see Appendix B.

All the functions used in the distributed RSA implementation will briefly
be described below.

E.1 find prime

The function next prime(x) returns the smallest prime number > x and does
so in a really fast manner even for very large x’s. Note that this function
uses a probabilistic definition of prime.

E.2 jacobi

The function jacobi(x, y) returns the Jacobi symbol
(
x
y

)
, and is used in the

distributed biprimality test.

E.3 pow

The standard power operator in Python, **, is not very optimized, and
takes from seconds to minutes to calculate typical large exponents like the
ones used in RSA. The function pow(a, b, c) returns the number ab mod
c in matter of milliseconds for arbitrary large numbers because it’s based

113
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on the exponentiation by squaring method (also called square-and-multiply
method).

E.4 divm

The function divm(a, b, m) returns x such that b · x ≡ a mod m, therefore
being an easy way of finding modular inverses by setting a = 1.

E.5 gcd

The function gcd(a, b) returns the greatest common denominator of the
numbers a and b.
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