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Figure 4.8: VIFF benchmarking: Multiplying random 65-bit numbers in parallel
and in serial.

details on VIFF benchmarks see [rGiN09], [Gei08a], [Gei09] and [Gei08c].
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Chapter 5

RSA

A CRYPTO NERD'S WHAT WoULD
1 IMAGINATION & 1 ACTVALLY HAPPEN:
HIS LAPTOP'S ENCRYPTED. HIS LAPTOP'S ENCRYPTED.
LETS BUILD A MILLION-DOLLAR, DRUG HIM AND HIT HIM WITH
CLOSTER TO CRACK \T- THIS $5 WRENCH UNTIL
U056 -BIT RGA\ GOT IT,
BLPST, OUR
EVIL PLAN )
IS FOILED! ~ O O

Figure 5.1: Comic strip from xked regarding RSA security ([XKC09]).

This chapter will present public-key encryption in general before describing
the RSA scheme. Both the standard RSA scheme and a distributed RSA
scheme will be described.

5.1 Public-key Encryption

Public-key encryption (also known as asymmetric encryption) is a form of
cryptosystem that uses different keys for the encryption and decryption pro-
cedures, one public key (PU), which is known by all, and one private key
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40 CHAPTER 5. RSA

(PR), which is only known by the one generating it. One of the keys is
used along with an encryption algorithm to transform a plaintext into a
ciphertext, while the paired key used along with a decryption algorithm re-
covers the plaintext from the ciphertext again. Public-key encryption can
be used for confidentiality! (encryption), authentication? (digital signature),
or both.

The opposite of public-key encryption is secret-key encryption (also known
as symmetric encryption) where the same key is used for both encryption
and decryption.

Figure 5.2 shows how public-key encryption is conducted when Alice wants
to send a message to Bob in such a way that only Bob can read the message.

< <

Alice U, PR, Bob

Decryption | |[—— M
algorithm

Encryption
algorithm

W

Figure 5.2: Public-key encryption: Alice sends a confidential (encrypted) message
to Bob using Bob’s public key, PU,. Bob is the only one with the paired key, PRy,
and therefore the only one who can decrypt and read the message.

First Alice downloads Bob’s public key (PUy) which is publicly available.
Alice then inputs the message M and Bob’s public key to the encryption
algorithm and sends the output from the encryption (ciphertext C') to Bob.
Once M is encrypted with Bob’s public key, only the paired key (Bob’s
private key, PRy) can obtain M again. This is done by Bob inputting the
ciphertext C' and his private key to the decryption algorithm which outputs
M for Bob to read.

Figure 5.3 shows how public-key encryption is conducted when Bob wants
to authenticate that a message actually is sent by him (referred to as signing
a message). Notice that in this figure, the arrows are from Bob, while in
Figure 5.2 they are towards Bob. This is because now the authentication
is the important property, Bob wants to prove that he actually sent the

! Confidentiality: Protection of data from unauthorized disclosure ([Sta06]).
2 Authentication: Assurance that the communicating entity is the one that it claims to
be ([Sta06]).
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5.1. PUBLIC-KEY ENCRYPTION 41

message, but the message is not secret. The procedure is as follows: Bob
uses his private key to encrypt a message M and sends it to Alice, which
in turn uses Bob’s public key to assure herself that this message actually is
from Bob. Anyone who obtains the ciphertext C' sent from Bob can decrypt
it by using Bob’s public key.

< <

Alice U, PR, Bob

M

Encryption | |<—— M|

algorithm

V] «—— | Decryption
algorithm

Figure 5.3: Public-key encryption: Bob sends an authenticated (signed) message
to Alice by using his private key, PR}, to encrypt a message M into the ciphertext
C. Alice receives C' and uses Bob’s public key, PU, to decrypt the ciphertext C
into the message M.

Notice that if Bob wants to send a confidential and authenticated message
to Alice, he first needs to sign the message using his own private key and
the message M as input to the encryption algorithm, obtaining C;. Next,
inputting this C along with Alice’s public key to the encryption algorithm,
results in C5, which he sends to Alice. Alice would now need to use her
own private key and Cs as input to the decryption algorithm to obtain Cf.
Lastly, Alice inputs C; and Bob’s public key to the decryption algorithm
and obtains the message M. A figure for this scheme is omitted here.

A common misconception about public-key schemes is that one pair of keys
is enough to send messages back and forth between two or more players. But
as can be seen in Figure 5.2 and 5.3 this would only yield confidentiality one
way and authentication the other way. Therefore, each player needs a own
key pair in order to be able to maintain both confidentiality and authenti-
cation both ways.

Well-known public-key algorithms include RSA ([RSAT78]), Diffie-Hellman
key exchange ([DH76]) and ElGamal encryption system ([EGS85]), where
RSA is based on the difficulty of factoring large numbers, whereas both
Diffie-Hellman and ElGamal relies on the difficulty of computing discrete
logarithms.
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42 CHAPTER 5. RSA

5.2 RSA Scheme

RSA was developed by Ron Rivest, Adi Shamir and Leonard Adleman at
Massachusetts Institute of Technology (MIT) in 1977 and published in 1978
in the article [RSA78]. Since then, it has become the most widely used
general-purpose algorithm for public-key encryption. The security of RSA
relies on the difficulty of factoring large numbers, more specifically the fac-
toring of the public modulus N.

The RSA algorithm consists of four separate parts, namely: key generation,
encryption, decryption and signature, all described in full detail below.

Key generation:

Select p, q p and ¢ are both prime, p # ¢
Calculate N = p - ¢

Calculate o(N) = (p—1)(¢g—1)

Select an integer e ged(p(N), e) = 1,1 < e < @(N)
Calculate d d = e ! (mod ¢(N))
Public key PU = {e, N}
Private key PR = {d, N}
Encryption:

Plaintext M < N

Ciphertext C = M°®mod N
Decryption:

Ciphertext C

Plaintext M = C%mod N
Signature:

Plaintext M < N

Ciphertext C = M%mod N
Verification M = C° mod N

The protocol for key generation must be done first. It starts by finding two
distinct prime numbers p and ¢. From p and ¢, N and ¢(N) are calculated
as N =p-qgand o(N) = (p—1)- (¢ — 1) where ¢(N) is the Euler totient
function®. Next, an integer e is selected such that the greatest common di-
visor (ged) of p(IN) and e is equal to 1, and e is a number larger than 1 but
less than (V). The reason why e is selected with these restrictions is that

3Buler’s totient function ¢(N) is defined to be the number of positive integers less than
N and relatively prime to N. This means that if p is prime, then ¢(p) = p—1 by definition
of prime numbers. It can also be shown that if p and ¢ are distinct primes, with N = p-q,

then o(N) = ¢(pq) = ¢(p) - ¢(q) = (p — 1) - (¢ — 1) ([Fra03]).
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5.2. RSA SCHEME 43

there must exist an inverse to e mod ¢(N). Such an inverse can be found by
using the Extended Euclidean Algorithm (see [CLRS01], [Ros03] or [TWO06])
if and only if ged(¢(N), e) = 1. Lastly, the inverse d = e~! mod ¢(N) is
calculated, yielding the public key PU = {e, N} and the private key PR =
{d, N}. The size of a RSA key is the length of the modulus N in bits, mean-
ing that p and q preferably are approximately half the key size in length each.

Encryption and decryption are closely related, and encryption must be con-
ducted first. Say Alice wants to send a message M to Bob such that no
other person than Bob can read the message as shown in Figure 5.2. Alice
downloads Bob’s public key {e, N} and calculate the ciphertext as C' = M*¢
mod N, before sending C to Bob. Notice if M is larger than N, Alice needs
to break the message into smaller pieces before encrypting it, My, Ms .. .,
where each M; < N, resulting in C7,C>. . ..

When Bob receives C' from Alice, he can use his private key {d, N} to obtain
the plaintext M. This is done by Bob calculating M = C?% mod N. It can
easily be seen that this protocol is correct:

C = M°modN
M = C?mod N = (MY mod N = M® mod N

Since d is the inverse of e (mod N), this means that ed = 1 mod N, which
in turn makes the last expression equal to M mod N = M.

The signature protocol is very similar to encryption and decryption, the only
difference is that the private key is used for encryption and the public key
is used for decryption, the opposite of how the keys are used in standard
encryption and decryption. An example with actual values for encryption
and decryption are included in Example 6 below.

Example 6. (RSA encryption/decryption) Bob has generated a valid
RSA key as explained above obtaining the values:

p = 19

q = 23

N = p- q =437

e(N) = (p—1)-(g—1) =396
e = 17

d = e ! mod 396 = 233

This means that the Bob’s private and public keys are {233,437} and
{17,437}, respectively. Alice wants to send a message M = 2 to Bob.
She encrypts the message using Bob’s public key to obtain the ciphertext
C:

C = M®mod N = 2'7" mod 437 = 409
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44 CHAPTER 5. RSA

Alice then sends C' to Bob, which uses his private key to obtain the message
M:

M = C%mod N = 409%3 mod 437 = 2

Bob yields the message M = 2, which is correct. Signature is very similar,
as explained earlier, therefore an example is omitted here.

5.3 Distributed RSA scheme

The difference between a standard RSA protocol and a distributed RSA
protocol is that no single player can have complete knowledge of the private
key, meaning that the private key needs to be secret shared among all the
players. Distributed RSA can be performed in a number of different ways,
although the method which has gained most acceptance is the one proposed
by Dan Boneh and Matthew Franklin in their article Efficient Generation
of Shared RSA keys ([BF97]), and in the updated and more detailed version
Ezperimenting with Shared Generation of RSA keys ((MWB99]) by Michael
Malkin, Thomas Wu and Dan Boneh. This method is the current milestone
for generating distributed RSA keys, and will be described here. The gener-
ation of distributed RSA keys using this method consists of 4 steps: Picking
candidates, trial division on N, distributed biprimality test and calculate ez-
ponents, shown in Figure 5.4. These steps, in addition to how to perform
distributed decryption and distributed signature are all described in detail
in the following.

5.3.1 Pick Candidates

This step is where candidates for p and q are chosen, but since the character
p is also used as the order of the finite field, g will be used here for the can-
didates. Each player i picks a secret integer ¢; and keeps it secret. For the
protocol to work, N needs to be a Blum integer?, therefore player 1 picks a
random ¢; which is congruent to 3 mod 4, while the rest of the players picks
@;’s which are congruent to 0 mod 4, such that the total ¢ = g1 + g2+ ... + qx
(where k is the number of players), is congruent to 3 mod 4, making N a
Blum integer.

Next, the parties performs distributed trial division to determine that ¢ =
q1+ g2+ ...+ qi is not divisible by any small prime less than a boundary B1
by using MPC. The distributed trial division is conducted as follow: Let ¢
be as defined above, and let [ be a small prime. To test if [ divides ¢ each
player picks a random r; € Z,. Next, the players compute

4N is a Blum integer if N = p - ¢ where p and q are distinct prime numbers congruent
to 3 mod 4. That is, p and ¢ must be of the form 4¢ + 3, for some integer ¢ ([Con09a]).
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Start
Pick candidates
Fail
OK
Trial division on N
Fail
(8] 4 L 4
Fail

Figure 5.4: The distributed RSA protocol consists of 4 steps: Picking candidates,
trial division on N, distributed biprimality test and calculate exponents. The pro-
tocol can fail at any of the 3 first steps, which means that new candidates must be
picked.

k k
qr = (qu> (Zn) mod |

i=1 i=1
If gr # 0, then [ does not divide g. By using this method a bad candidate
is always rejected, but a good candidate can also be rejected if [ divides
r =1y 4+ 719+ ...+ 1. To decrease the probability of discarding a good
candidate, do the test with two different picked r for each [ such that r1 =
r11 + 712 + ... + 11 and 72 = ro1 + r9g + ... + 79k, and therefore computing

qrl = <ng><grh> mod [
qr2 = <§:qz><ir21> mod [

i=1 i=1

The test for [ is passed if at least one of the values is different from zero,
that is if gr1+qr2 # 0. If the test is passed, then set [ to the next prime and
redo the test until the boundary B1 is reached. If the test fails at any of the
I’s, then a new ¢ needs to be picked as described above. If B1 is reached,
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then ¢ has passed the distributed trial division, and the other prime ¢ is
picked and tested in the same manner.

5.3.2 Trial Division on N

When both the candidates p and g have passed the distributed trial division,
an MPC is conducted to compute N = (p1 +pa+...+px) - (g1 +q2+ ... + qi),
which is revealed to all players. As N is the product of two large candidate
primes p and g, it should not be divisible by any other primes. The players
therefore do a more comprehensive trial division on the revealed N locally
to check that N is not divisible by any small prime in the range [B1, B2] for
some boundary B2 (typically much larger than B1). If it turns out that N
is indeed divisible by a small prime up to B2, this test is declared a failure
and the whole key generation protocol restarts by the players picking new
values for the candidates p and gq.

5.3.3 Distributed Biprimality Test

After the two trial division tests already conducted, it is clear that IV is not
divisible by any small prime numbers up to the boundary B2. The next
test is a distributed test and also a probabilistic test since it’s infeasible to
check all prime number up to the square root® of p and ¢ to be absolutely
sure that p and ¢ actually are prime numbers.

The distributed biprimality test consists of 4 steps (for proof of the correct-
ness of the protocol the reader is referred to [BF97] due to the length of the
proof).

Step 1: The players agree on a random g € Z}‘V.6 This can be done by
one of the players picking a random ¢ and revealing it to all the other
players.

Step 2: The players compute the Jacobi symbol” g over N. If (%) # 1 the
protocol is restarted at step 1 by choosing a new g.

Step 3: Otherwise, the players computes v = g‘P(”)/4 mod N as an MPC.
Note that p(n) = (p—1)(¢—1) = N — p — g + 1, therefore player 1
computes v; = gV "P1=0+tD/4 ;04 N. The rest of the players compute
v; = g~ Pita)/4 mod N. Next, all players secret share their values of

If n is a composite integer, then n has a prime divisor less than or equal to /n.
([Ros03)).

6Z% is the set of nonzero members of Zy ([Fra03]).

"The Jacobi symbol is a generalization of the Legendre symbol ([Con09¢]) and defined
as follows: For any integer a and any positive odd integer n the Jacobi symbol is defined

a

as the product of the Legendre symbols corresponding to the prime factors of n: (;) =
( - )al( - )a2 ( 2 )o”C where n = p{ps? ...pp* ([Con09b]).

p1 b2 Pr
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k
v; such that v can be calculated and revealed, v = H v; mod N. Once
i=1
v is revealed, the players check if:

k
v:Hvi;:tlmodN
i=1

If the test fails the parties declare that N is not a product of two
distinct primes, and the protocol is restarted from the beginning by
picking new values for p and gq.

Step 4: There are two ways of implementing step 4, and only the alter-
native step is shown here. This alternative step requires very little
calculations, although there is a bit more communication between the
players. The step tests if gcd(N,p + ¢ — 1) > 1. The players cannot
reveal their private p; and ¢;, therefore each player picks a random
number r; € Zy and keeps it secret. Then they do an MPC by calcu-
lating 2z such that p and ¢ are not revealed:

k k
z= (Zn) . <1+Z(pi+qi)> mod N
i=1 i=1
Next, z is revealed, and the players check if ged(z, N) > 1. If so, N is
rejected, and the protocol is restarted from the beginning by picking
new values for p and ¢. If N is actually a product of two distinct prime
numbers, it will pass this test with overwhelmingly high probability.
If N passes this test, then NN is declared to be the product of two
distinct primes, and the calculation of the public and private exponent
can start.

5.3.4 Calculate Exponents

When p and ¢ have been found and N has been calculated, the next step
is to find e and d that form the public key and private key respectively to-
gether with N. There are two options regarding the public exponent e, it
can be set to a standard (small) RSA exponent such that no calculations are
required, or it can be calculated, and therefore vary from key to key. In this
description, only the static e approach is outlined, which can use a chosen
e less than approximately 220 ([MWB99]). In the following, it’s given that
© = (). Since e is an RSA exponent, it is given that ged(e, ) = 1.

k
The calculation of d = Z d; needs to be computed in a distributed manner,

=1
where at the end of the computation, each player only knows its own d;.

Traditionally, the ged algorithm is used to find an inverse of e mod ¢, but
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that would involve computing modular arithmetic when the modulus is se-
cret shared, which is possible, but really slow. The value of p = N—p—qg+1

is not known by any of the players, but all players know their part, ;, where
k

Y= Z ;. Knowing this, fortunately there is a trick for computing e~
i=1
© without using any reductions modulo . The trick involves three steps:

Limod

1

1. Compute ¢ = =" mod e.

2. Set T'= —¢ -+ 1. Observe that T'= 0 mod e.

3. Set d = T/e. Tt can be verified that d = e~! mod ¢ since d - e =
T =1 mod ¢. Using this method, the need for reductions modulo ¢
is avoided.

The protocol is performed as follows:

Step 1: The players compute the value of [ = ¢ mod e. This can be done
by each player calculating I; = Z@i mod e locally, before doing a
joint MPC to obtain the value I = > 1; mod e.

Step 2: Each player now calculates ¢ = [~ mod e locally. As shown above
d=T/e=(—s-¢+1)/e, therefore each player also locally calculates

‘-
e

After each player has successfully calculated d;, the RSA private ex-
ponent d = Zdi + 7 where 1 < r < k.

Step 3: Once each player has obtained its d;, a final computation needs to
be done in order to determine the value of . Note that for a encrypted
message ¢, the decryption would be

Mzcdzc’"Hcdi mod N

Therefore, one of the players can determine the value of r simply by
trying all possible r’s in a trial decryption. Say player 1 is the one doing
the trial decryption, it picks a random message m € Zy and computes
¢ =mf mod N. Then every player participates in a decryption of c.
Each player calculates m; = ¢% mod N locally, and sends the result to
player 1. Player 1 knows that the value of 7 is in the range 1 < r < k,
and tries all of them to see which one satisfies

m = (Hmi)cr mod N
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At last player 1 updates dy by setting di = di + . The distributed
RSA protocol is now complete with the correct value of d secret shared
among the k players.

Note that using a static e makes the protocol very efficient, but some bits of
the key is leaked to all the players. The leakage happens when calculating
[ = ¢ mod e and the trial decryption process where r is determined. This is
a total of logs e+ logs k bits. This step can however be conducted such that
no bits are leaked by using an arbitrary public exponent (calculated each
time a key is generated), but this makes the protocol somewhat less efficient
(see [BF97]). Another approach is to just increase the total number of bits
in N to compensate for the leaked bits.

5.3.5 Decryption

Once a distributed RSA key is generated, the players can participate in a
joint decryption of a ciphertext C that has been encrypted using the public
key. In order to do so, the players do almost the same as are done when the
trial decryption is conducted, only this time r is already found, therefore
they do an MPC to find M directly:

k k
M = Hm, mod N = HC’d" mod N
i=1 i=1
The decryption process is conducted by each player locally calculating its
part of M, m; = C% mod N, which in turn is secret shared among the
players. Next, the players perform an MPC on the shared m;’s to obtain
the total m

k
m = H m;
i=1
The value of m is revealed and the message M is found by calculating

M =m mod N

5.3.6 Signature

The players can also sign a message, and therefore provide authentication.
The signature process is performed as follows: A message M is to be signed
using the secret shared part of the private key, d. The message M is chosen
by one of the players and sent securely to all the other players. Then each
player calculates its part, ¢;, of the signature C':

ci = M% mod N
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The values of the ¢;’s are then secret shared among all the players, and the
total ¢ is obtained by conducting an MPC

k
Cc = H C;
i=1
The value of ¢ is revealed and the signature C' is found by calculating

C =cmod N
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Chapter

Distributed RSA Implementation in
VIFF

This chapter describes the implementation of a distributed RSA protocol
for three players in VIFF, programmed as the main part of this thesis (the
code can easily be altered to support more players). The implemented code
is included in Appendix D, and a description of the general multiprecision
Python (GMPY) module, which is used extensively throughout the imple-
mentation, is found in Appendix E.

The distributed RSA implementation is based on the protocol proposed in
[BF97], which is described in detail in Section 5.3. Two changes have been
made to the protocol to speed up the time needed to generate valid keys,
regarding the distributed trial division and trial division on NN, respectively.
The implemented algorithm can generate arbitrary large key sizes (validated
up to 4096 bits in VIFF) with a success rate of 100%. At the end of the
key generation process, the players are convinced that the public N is the
product of two unknown distinct primes, p and ¢, and that they share a
valid key.

6.1 Coding Style

Recall from Section 3.2 that an MPC consists of three stages: Input stage,
computation stage and final stage. Further, as explained in Section 4.4.1,
these three stages are implemented using two functions in VIFF. The first
function is used for the two first stages, inputting the values and do the
computations. The second function is used for the final stage, to reveal the
answer. Throughout the distributed RSA code, this procedure is used thor-
oughly, the first function having a descriptive name function_name() and
the reveal function having the paired name check_function-name().
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The first step in the distributed RSA algorithm, involving picking candidates
for p and ¢, have distinct functions for p and ¢, although the code contained
in these functions are virtually alike, the only difference found is when the
protocol moves to the next step (trial division on N). This choice is purely
for simplifying the readability of the code, and does not make the code slower
in any way, although more code is needed.

6.2 Initialization

The initialization process is a standard code used in all VIFF applications
to setup the program with the right parameters and is written by the VIFF
Developer Team. Basically, this code creates a runtime instance, parses the
command line arguments into the application and starts the Twisted event
loop. Next, the application is initialized by making an instance of the Pro-
tocol class, which is the main application. The code for the setup process is
of course included in the distributed RSA code in Appendix D, but will not
be described in any more detail in this thesis.

The main application starts at the __init__ function in the class Protocol,
where variables marked as changeable variables must be set to the desired
output from the protocol. These include the number of rounds to be con-
ducted (both for key generation and for decryption), the key size for each
round, and the boundaries for trial division.

6.3 Key Generation

The step to generating valid keys is by far the most time consuming step
in the protocol. As shown in Figure 5.4, the algorithm for generating dis-
tributed RSA keys involve 4 steps, which will be described in the following.

6.3.1 Pick Candidates

An overview of the implemented function in VIFF for picking candidates is
shown in Figure 6.1. To avoid misunderstandings with the candidate p and
the size of the finite field Z,, ¢ is used to represent both the candidates, p
and ¢, in the following.

The implementation starts by each player picking a private g; such that
q = q1 + g2 + q3. Next, the players perform a distributed trial division on g¢,
which assures that ¢ is not divisible by any small prime number up to the
boundary B1.
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Start
! l‘

Y
generate_p generate_q

h i

trial_division_p trial_division_q
Y Y
check_trial_division_p check_trial_division_g
Fail
oK ¥

Figure 6.1: Flow chart for the implemented functions for picking candidates p and
q and doing distributed trial division. Parameters to the functions are omitted.

The trial division in this thesis is implemented in a more optimized manner
compared to the method described in Section 5.3.1, and is the first of the two
improvements to the algorithm. Recall that for the distributed trial division
in [BF97], the distributed trial test is conducted two times for each small
prime [ < B1 to decrease the probability of discarding a good candidate.
By doing this the probability of discarding a good candidate is equal to

1 1

1— 1-5) <=

t-w =
In the VIFF implementation, a boundary B1 = 12 is used, meaning that
the probability of discarding a good candidate p and ¢, independently, would
have been approximately 17.1%. Consequently nearly 1/5 of the good can-
didates would have been discarded for both p and ¢. The implemented
method for the distributed trial division in this thesis has zero probability
of discarding a good candidate, and is specially constructed for three play-
ers, although it can easily be expanded to support an arbitrary number of
players. The method is as follow: Let [ < B1 be a small prime number and
q; be player i’s part of q. Each player now locally calculates g_trial; = g;
mod | and picks a random integer r; € Z,. Then the players secret share

the values of q_trial; and r; and computes

q-trial_tot = (q_trialy + q_trialy + q_trials)
rtrial_tot = (r1 +ro +13)
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Next, for simplicity, set t = q_trial_tot, and the players computes trial_reveal
as follows

trial_reveal = t-(t—1)-(t —2-1)-r_trial_tot

and the answer trial_reveal is revealed to all players. The beauty of this
method is that the revealed answer is now zero if and only if ¢ is a bad
candidate, else it’s just a random number. The correctness of this method
is because when summing up ¢ = > (q-trial; mod 1), for three players, there
are only three illegal t’s, namely: 0, [ and 2-1 (for four players an additional
multiplication of (¢ — 3 -1) would have been needed and so forth). If the
revealed answer is not zero, it’s just a random number that does not yield
any information about q.

Notice from Figure 6.1 that the distributed trial division is performed on
the primes p and ¢ separately, which means failing either p or ¢, it’s only
necessary to generate the failed prime again.

6.3.2 Trial Division on N

The next step in the algorithm is to reveal N and continue by doing local trial
division on this value. The second improvement in comparison to [BF97] is
implemented for this step. An overview for the implementation functions
regarding trial division on N is shown in Figure 6.2.

Start

h i
check_n

Y
primality_test N generate_p

i ;

check primality _test N

Fail

OK
Y

Figure 6.2: Flow chart for the implemented functions for doing trial division on
the revealed N. Parameters to the functions are omitted.
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In [BF97], once p and ¢ have passed the distributed trial division and N
has been computed using an MPC, a more comprehensive trial division on
N in the range [B1, B2] is conducted locally. In the VIFF implementation
however, the same range [B1, B2] is not checked by each player. Instead
each player checks a different range of small primes, and when finished, all
players agree whether any of the players have found an illegal factor of N.

The VIFF code is written such that the players collaborate to check that
N is not divisible by any prime number less than 20000. Player 1 checks
all the primes from B1(= 12) to 15000 (1749 in total). Player 2 checks all
primes from 15001 to 17500 (260 in total), and finally, player 3 checks all
primes from 17501 to 20000 (248 in total). The code for the trial division
on N is included in Figure 6.3 (comments omitted):

def primality test Hiself):
test_fail = 0
for i in self.prime_list khi:

if self.n revealed 3 1 == 0O:
test_fail = 1
break
faill, failz, fail3 = self.runtime.shamir share([1, Z, 3], self.ip, test Ffail]

failed tot = faill + failZ + fails
open failed tot = self.runtime.open(failed tot)

results = gather shares([open failed tot])
results.addCallback(self.check primality test N

Figure 6.3: VIFF code for the local trial division on N. Each player checks a range
of small primes before all players agree whether IV has an illegal factor not equal
to p or q.

As can be seen in Figure 6.3 each player runs through its list of prime num-
bers and checks that N is not divisible by any of them. If NV turns out to be
divisible by a prime number, the loop for that player will break. Next, the
value from each player is secret shared and summed up by doing an MPC
before it is revealed (the reveal function check_primality_test_N is not shown
here). If the revealed answer is not equal to zero, one or more of the players
have failed N as a candidate, and the whole process have to start over again
with picking p and g. One interesting thing to notice here is why player 1
can check a much larger span of prime numbers. This is simply because of
the break command in the code. The probability of a number N being di-
visible by any prime number is higher for small primes, and therefore player
1 will fail in the loop most often. If all players had checked equal amounts
of prime numbers, then on average player 1 would fail rather quickly and
would just be waiting, while player 2 and player 3 would most often have to
finish their whole lists.
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Both [BF97] and [MWB99] have proposed similar and quite different meth-
ods for optimizing this step, see more in Further Work (Chapter 9).

6.3.3 Distributed Biprimality Test

No changes have been done to the distributed biprimality test as it is ex-
plained in Section 5.3.3. The implemented functions for this step are shown
in Figure 6.4. This test can fail when checking the v and when checking the
z, both of which will result in picking new candidate primes p and ¢ from
the beginning. Failing the test on g is solved by picking a new g and does
not have to start the whole protocol from the beginning.

Start

Fail

generate_p

oK

Figure 6.4: Flow chart for the implemented functions for performing the dis-
tributed biprimality test. Parameters to the functions are omitted.

One thing to notice in the implemented code is when generating the g (shown
in Figure 6.5). The g is picked by player 1, but everyone needs to get hold of
the value. This is done by a simple secret sharing where player 1 inputs its
g-value, and the other players participate in the sharing, but does not input
anything to the shamir_share-function. This way, the players can efficiently
agree on the value of g.

6.3.4 Calculate Exponents

After the first three steps in generating a distributed RSA key, the rest of
the protocol, calculating the exponents, cannot fail, and is therefore done
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def generate g(self]:

i zelfTufitdime o id s=ils

self.y = random.randint(l, self.n revealed - 1)

self.y = self.runtime.shamir share([1l], self.ip, self.q)
else:

self.g = self.runtime.shamir share([1], self.Zp)

gelf.open g = self.runtime.open(self.q)
results = gather shares([self.open g])
results.addcallbhack(self.check g)

def check giself, results):
self.g = results[0] .value

Figure 6.5: VIFF code for sharing the g picked by player 1 among all players
before revealing the value.

quickly in order of time consumption. The flow chart for implementing this
step in VIFF is shown in Figure 6.6.

Start

Figure 6.6: Flow chart for the implemented functions for calculating the public
and private exponents. In addition, decryption and signature are shown as seperate
functions, which can only be performed after the whole key generation is already
done. Parameters to the functions are omitted.

This step is carried out precisely as described in Section 5.3.4, where the
public exponent used is the standard RSA exponent e = 216 + 1 = 65537
and player 3 is the one adjusting d3 = ds + r in the implemented code when
trial decryption is conducted. Note that it’s very common to use a static,
small RSA exponent as the public exponent e, like the one chosen in this
implementation. In practice, the most common static e’s are the Fermat
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primes'. The reason why these numbers are convenient to use is because

they make the modular exponentiation operations faster. When representing
a Fermat prime in bits, there are only two 1’s (the most significant bit and
the least significant bit), the rest of the bits are zeros, meaning that the
needed calculations are minimal. This approach however, can suffer from
some powerful attacks, see [FKJM'06] and [AA07].

6.4 Decryption and Signature

The functions for decryption and signature are separate functions that can
be executed after a valid distributed key has been generated. The flow chart
for the implemented VIFF decryption and signature functions are included
in Figure 6.6. The trial decryption when adjusting the private exponent
d, decryption and signature are all very similar, and the code for normal
decryption is shown in Figure 6.7.

def decryptioni(self, ciphertext):
# =mince plaver 1's d iz pegative, find the inverse
if self.runtime.id ==
ciphertext = gwpy.divm({l, ciphertext, self.n rewvealed)
base = gwpv.mwpz (ciphertext)

if self.runtime.id == 1:
power = gwpy.twpe(—-self.d)
else:
power = gowpv.opslself.d)

modulus = gupy.wpe(self.n revealed)
m i1 = int(pow(base, power, modulus))

wl, w2, mwd self.runtime.shamir share([1, 2, 3], self.ip, m 1)
m tot = wl * mZ * m3
open i tot = self.runtime.open(m Tot)

results = gather shares([open m tot] ]
results.addCallback (self.check decryption)

def check decryption(self, results]:
message = results[0] .wvalue 3 self.n revealed
print "\nlecryption of ciphertext yields M = " + str (message)

Figure 6.7: VIFF code for performing a distributed RSA decryption for three
players.

!Fermat Primes: Prime numbers Fz, that have the form Fz = 22° 4+ 1. The first
three Fermat primes are 3, 17 and 65537, referring to = = 0, 2, 4 respectively ([Lim09]).
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The code consists of two functions, decryption and check_decryption, where
decryption does the computations and check_decryption reveals the answer.
As can be seen, first each player locally calculates its m_i, which in turn is
secret shared among the players, obtaining the variables m1, m2 and m3
with shared values. Next, an MPC is conducted yielding m_tot = m1-m2 -
m3, before the result of m_tot is opened and revealed when the result is
ready. The final answer, message M, is found by calculating the revealed
value modulus V.

6.5 Code for Benchmarking

The implemented VIFF distributed RSA code also contains functions for
benchmarking. Benchmarking of the key generation process is incorporated
in the trial decryption at the end of the step for calculating the RSA expo-
nents. In addition, the decryption process can also be benchmarked, which
is optional. If this benchmark is activated, several decryptions of different
ciphertexts are perform in a serial manner. The number of rounds for both
key generation benchmark and decryption benchmark is set as described in
the initialization above, and needs to be set before the protocol is executed.

6.6 Running the Program

To run the distributed RSA protocol, VIFF needs to be installed, see how
to do so in Appendix B. As explained above, in the function __init__ a list
of alterable variables is found, that are the preferences for the output of the
protocol, and needs to be set. Do not however alter the variables that are
outlined as unalterable variables, as this may result in failure of the proto-
col. This guide to run the program is described for running all three players
locally on one machine using SSL between the players.

Start by opening three Windows Command Prompts, then create the con-
figuration files and the certificates files before starting the program for each
player in separate windows, the procedure is as follows:

Window 1 : python generate-config-files.py -n 3 -t 1 localhost:9001 local-
host:9002 localhost:9003

Window 1 : python generate-certificates.py
Window 1 : python RSA.py player-1.ini
Window 2 : python RSA.py player-2.ini

Window 3 : python RSA.py player-3.ini
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The time required to finish the protocol will vary, depending on the size
of the key and the number of rounds chosen, and of course the speed of
the computer used. In Figure 6.8, Figure 6.9 and Figure 6.10 the output
from player 1, player 2 and player 3 respectively are shown when a 128-bit
distributed RSA key is generated.
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Figure 6.9: Player 2’s output when generating a distributed 128-bit RSA key.

PRIVATE UARIABLES

68633

4413891 380982752888

3471833832842833448

= 3387994243772746297

M ¢public» = 55983641893578AAB189272272925854947989
Total bits in M = 125_396344852

Decryption = 432496002331859347671658113210865292335
Decryption = 2

zelf _p

d found, with +»r =1
Coprrect decryptions: 1 ~ 1
Completed vounds: 1 ~ 1

BEMCHMARKS FOR UALID KEY GEMERATION
times = [2.33852943879738891
Average: 2.33852%43188

Correct decryptions: 1 ~ 1

Figure 6.10: Player 3’s output when generating a distributed 128-bit RSA key.
Notice that player 3 is the one doing trial decryption and therefore has more output.

Even though a 128-bit key is not very hard to attack and considered to-
tally insecure, it’s just as an example, larger keys would produce multi lines
output for some or all of the variables, making it harder to read.
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Chapter

Security Analysis and
Benchmarking

This chapter starts by describing two security weaknesses found in the pro-
tocol in [BF97], followed by some guidelines for required key size in RSA.
Finally, the benchmark results of the implemented distributed RSA algo-
rithm in VIFF are presented and discussed.

7.1 Security Weaknesses

Two weaknesses are found in the article [BF97], both with respect to the
way a random number is used to secure the revealed answer. Both weak-
nesses could possibly reveal p and g and therefore also the private key {d, N'}.

7.1.1 Weakness 1: Distributed Trial Division

The first weakness is found in the distributed trial division, one of the very
first steps in the protocol, but can be avoided by implementing the improve-
ment described in Section 6.3.1.

As explained in Section 5.3.1, let ¢ = ¢1 + g2 + g3 be the candidate, [ be a
small prime and r; a randomly picked integer by player i from the field Z,.
In the proposed algorithm in [BF97], the players now compute

gr = (D_a)(D_ri) modl

The problem here is that ) r; is a random number from a large field 7Z,,
meaning that the probability for r to be prime is approximately 1/In(p)?

The Prime Number Theorem: The ratio of the number of primes not exceeding
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(where In(p) represents the natural logarithm of p). If r is not a prime,
it must be composite, meaning that it can be factorized into prime num-
bers smaller than 7. Any number, a, can be written as a product of prime
numbers, a = p{' - p5?...p¢ for prime numbers p; and positive integers
«;. Therefore the security of ¢ in this scheme is dependent of the size of
the biggest factor of r. If the biggest factor of r is small enough, r can be
successfully factorized and in turn, ¢ can be found.

The security can however be increased by letting each player locally calculate
s; = q; mod [, then jointly compute

qr = (Zsl)(Zn) mod 1

This way, the calculation of ¢ mod [ is correct, and since the actual ¢ is
never included in the calculation it can therefore not be found even if the
factorization of r is found. The problem however, is that the speed improve-
ment proposed for this step in Section 6.3.1 would then not apply. On the
other hand, by using the distributed trial division improvement proposed in
this thesis, both the speed and the security is improved and is therefore the
preferred method.

This weakness can be exposed after the protocol has accepted a pair of
candidates p and q. Knowing that p and ¢ are actually prime numbers, by
the fact that the trial decryption for d was correct, a player can go back
to this step and find all small factors of . When the remainder of gr,
after successfully dividing it by small prime numbers, is close to lng(N)/2
bits, a statistical prime test? can be used to check a range of primes around
the remainder of gr, then there’s a chance that the correct prime is found.
The reason is that the number of bits in the remaining part of gr, after
successfully dividing it by small prime numbers, will decrease with Ins(z)
bits (where z is a prime factor of ¢r) for each successful factor found of gr,
and both p and ¢ are approximately Ins(NN/2) bits. Knowing that p and ¢
are valid candidates and knowing the public exponent N makes it easy to
check if a valid prime has been found since N has exactly two factors, and
guessing one of them, reveals the other one.

and z/In(z) approaches 1 as z grows without bound. This consequently means that the
probability for a randomly picked integer x to be prime is approximately (z/in(z))/z =
1/ln(z) ([Ros03]).

2A statistical prime test (actually a compositeness test, since the test only outputs
probably prime, or not prime) is most often a simple fast test that is performed many times
to achieve a certain probability of a correct answer. The most popular prime tests are the
Miller-Rabin primality test, Solovay-Strassen primality test and the Fermat’s primality
test, see [TWO06] for detailed information about each of them.
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7.1.2 Weakness 2: Alternative Step in Distributed Biprimal-
ity Test

The second weakness is found in the alternative step to step 4 in the bipri-
mality test. The step checks the integers that fall into case 4 in the proof in
[BF97], meaning whether ged(N,p+ g — 1) > 1. If the test is true, then N
is rejected and the whole protocol will have to restart by picking candidates
for p and ¢. Each player picks a random r; € Zx and keeps it secret. Next,
the players jointly computes

3 3
z = (Zn)(— 1 +Z(pi —l—qi)) (mod N)
i= i=1
where the mod N part must be done after z is revealed. Because the mod
N part needs to be done after revealing z, this step suffers from the same
weakness as the weakness described for the distributed trial division. The
security relies on the random number r, and more specifically, on the largest
prime factor of r. If » does not consist of large enough factors, both p and
q can be found by any of the players by finding the relation of N = pq and
part of the expression used to calculate z, namely p + q.

It can be seen that the expression (—1 + p + ¢) is approximately b =
(loga(N/2) 4+ 1) bits long. Now consider if r actually consist of very many
small factors, such that it’s computationally feasible to find all factors of
z except the factor (—1 + p + ¢). The search for factors ends when z is
divided down to approximately b bits. If such is the case, then the following
relationship between N and p, ¢ can be found:

N=pg = q=1

z=r(—1+p+q)

Rearranging variables and inserting the new expression for ¢ yields

f=—-1+p+gq

_ N
f—i—l—p—l-%
z —

Lrp-p’=N
Moving all values on the left side yields
z
—p* + TP +p—-N=0

This is a quadratic equation® where p is the only unknown value. Solving
this equation yields two possible p’s, where the right one is found by dividing

3 A quadratic equation is given on the form az? 4 bz +c = 0, where a # 0. The solution

—bd+/b2—4ac

to this equation (if any) is found by calculating x = e
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N/p for both p’s and see which one yields an integer as the answer, which
in fact is the other factor of IV.

Given that (—1+ p+ q) is not necessarily a prime, the probability of a suc-
cessful attack is higher for the trial division weakness (weakness 1), because
there it is given that one of the factors are around half the length in bits.
If (=1 + p+ q) also turns out to be a composite number with many small
factors, every combination of small factors is possible for the factorization
of r, including those factors found for (—1+ p + q).

In both weaknesses, the security relies on the biggest factor of the random
number r. One way of securing both the weaknesses is to pick random
numbers r that are guaranteed to have a large factor or ensure that r is
prime, but this is of course bothersome, and in fact the same problem that
is to be solved by picking the prime numbers p and ¢q. Another way for
securing this weakness is to do the normal step in the distributed biprimality
test instead (see [BF97] and [MWB99)).

7.2 RSA Key Size Recommendation

The security of RSA relies on the difficulty of factoring large prime numbers
and therefore the size of a RSA key, both a standard key and a distributed
key, should be large enough such that is would be computationally infeasible
to factor the key and find p and ¢ in reasonable amount of time. The size
of the key should therefore take into consideration how long the key will be
in use, and what it’s supposed to protect.

The RSA Laboratories started a challenge in 1991 with the name The RSA
Factoring Challenge, where RSA keys of different sizes where generated and
the modulus NV was published for each of them. The aim of the challenge
was to be the first to find p and ¢ given N, where finding the solution in-
volved collection of a prize money reward (for some key sizes only). The
challenge ended in 2007, and the highest factored key so far is the RSA-200
(factored in 2005), which contains 200 decimals, equal to 663 bits. For more
about the challenge, see [Sec07], [Con09d] and [Con09e].

Although the factoring of a 663-bit key was conducted using 80 powerful
computers and took several months to finish, keys less than 1024 bits are
considered insecure and are advised not to be used in any circumstances.
1024-bit RSA keys are used in many applications today, and for many of
those applications very high security is not required, typically in scenarios
where a key is used only once to send some data, e.g. form data, over the
Internet. A 1024-bit RSA key is not expected to be broken in the very near
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future, although it’s the next of the main keys sizes that will fall, since the
512-bit RSA key was broken in 1999.

For other applications that are more dependent on high security in order
to maintain their reputation, such as banks, a key size of at least 2048 bits
is recommended, in some cases also 3072 bits or 4096 bits, all of which are
expected not to be breakable in decades to come. In the case of a bank,
typically the RSA key is used to encrypt a certificate that is used to commu-
nicate securely with the bank. Such a certificate often has long operating
time, ranging from several months to several year, which strengthen the
recommended need of a very secure key.

7.3 Benchmarking the Implementation

Benchmarking for the implemented distributed RSA protocol in VIFF has
been conducted both with three players on three distinct computers on a
local area network (LAN) in addition to all players performing the protocol
on one computer (using different port numbers). Both key generation and
decryption have been benchmarked. The results are discussed in this section.

7.3.1 Benchmark Equipment

The benchmark equipment used is three computers which are connected via
a 10 Mbit/s wired LAN. The specifications on the three computers are as
follows:

¢ HP Compaq DC7900, Intel Core 2 Duo processor clocked at 3 GHz,
3.5 GB memory, Windows XP SP3.

e Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

e Dell Optiplex GX270, Intel Pentium 4 processor clocked at 2.6 GHz,
1 GB memory, Windows XP SP3.

All three computers have been used when benchmarking over LAN, while
the HP Compaq DC7900 computer has been used to benchmark locally with
all player on the same computer.

7.3.2 Key Generation

The key generation part measures the average time needed to generate a
valid key. In this thesis the average is found by performing the key genera-
tion protocol 100 times and take the average of all rounds. The benchmark-
ing is conducted for key sizes 32-bit to 4096-bit using SSL on all tests. The
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# bits | Rounds Avg.time Ratio | Min (s) | Max (s)
32 100 1.75 s 0.03 min N/A 0.30 6.54
64 100 3.08 s 0.05 min 1.76 0.48 9.67
128 100 15.20 s 0.25 min 4.94 0.77 87.17
256 100 58.28 s 0.97 min 3.83 0.67 294.77
512 100 226.55 s 3.78 min 3.89 1.04 1326.16
1024 100 1956.69 s 32.61 min 8.64 7.04 8861.80
2048 10 7252.28 s 120.87 min 3.71 9.51 20713.43
4096 1 132603.92 s | 2210.07 min | 18.28 - -

Table 7.1: Benchmark for generating valid distributed RSA keys on LAN. Ratio
is the current average divided by the previous average.

benchmarking of the largest keys is very time consuming, and has therefore
been benchmarked less rounds (10 rounds and 1 round, respectively), which
means that they are not very statistical accurate. Key sizes less than 1024
bits are generally considered insecure, and benchmarking these are purely
to get an overview of the increase in time needed to generate valid keys as
the keys get larger. The results from the LAN benchmark are presented in
Table 7.1.

The first thing to notice from Table 7.1 is that the average time for generat-
ing a 1024-bit distributed RSA key over LAN is 32.6 minutes, ranging from
7 seconds as the fastest to 8861 seconds (~148 minutes) as the slowest. Half
an hour is quite a lot of time, and it excludes several scenarios for use of a
distributed RSA key. It can also be seen that based on 10 rounds, it takes
on average roughly 2 hours to create a 2048-bit distributed RSA key, and
a stunning 37 hours to create a single 4096-bit distributed RSA key. Even
though the last is based on one round only, it reveals that creating such a
large key can be very time consuming. On the other hand, for scenarios
where the distributed key is not needed instantly and is going to be used for
a long while, half an hour or more does not seem to be impractical.

As for the ratio measurement, notice that a steady ratio of approximately
4 applies to the low length keys (up to 512 bits), which is also the ratio to
expect when generating a distributed RSA key using the algorithm in [BF97].
Recall that the probability of a randomly picked number near NV being prime
is approximately 1/in(N). Doubling the number of bits in N means to
square the maximum value of both p and q, e.g. maz(p, q) = (22°%)? = 2512,
which in turn decrease the probability of picking a prime to half.

1/1n(2%°%) = 1/(256 - In(2)) = 0.56%
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1/In(2°1%) = 1/(512 - In(2)) = 0.28%

Consequently, a steady decrease factor of 2 applies for finding primes when
doubling the key size. Recall also that the distributed RSA protocol picks
both p and g before N is calculated and revealed, meaning that the proba-
bility of both being prime at the same time is

1 1
e~ 1/(In(p)?)
In(p) In(q)
which means that the probability is decreased as a consequence of squaring
(in reality a little less because distributed trial division is conducted when
choosing p and ¢, before calculating N). The total ratio is therefore ex-
pected to be approximately the decrease factor squared, that is 22 = 4.

The ratio from a 512-bit key to a 1024-bit key is 8.64, which is not accord-
ing to the expected ratio. The average time used increases from an average
of 3.78 minutes on the 512-bit keys to an average of 32.61 minutes on the
1024-bit keys, which indicates that 1024 is the first key that is less efficient
to generate. The cause is not solely one reason, but rather several reasons
is of significance. As the key sizes increases, the calculations must be per-
formed on larger numbers, requiring more memory, more network traffic is
generated (potentially exceeding the limit of maximum packet size) and a
larger Z;, must be used to be able to represent all the shared values.

The results from the local benchmark are presented in Table 7.2. The first
thing to notice is that these results are greatly improved compared to the
LAN benchmarks. The reason is mainly because the network traffic can be
sent locally on different ports instead of via the wired LAN. Another reason
is that the computer benchmarking locally is slightly faster than the two
other computers. This last point does not however contribute that much,
given that this computer only have 2 cores, therefore only 2 players can do
calculations at the same time, while in the LAN benchmark, all players have
calculation power whenever needed.

Compared to the LAN benchmark, all key sizes takes approximately half the
time to conduct locally instead of over the LAN. The 1024-bit key size is ac-
tually even better, performed in approximately 43% of the time needed over
LAN. The ratios are a bit more fluctuating for this benchmark, although
reasonable near a factor of 4 up to key size of 1024 bits. An interesting
thing is the one 4096-bit key generated, using less than 3 hours compared to
the one using 37 hours to generate over LAN, which means, as mentioned
above, that such large keys can vary a lot in time consumption.
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# bits | Rounds Avg.time Ratio | Min (s) | Max (s)
32 100 0.66 s 0.01 min N/A 0.07 3.23

64 100 1.54 s 0.03 min 2.33 0.09 10.47
128 100 7.90 s 0.13 min 5.13 0.61 47.75
256 100 26.72 s 0.45 min 3.38 1.10 139.88
512 100 124.89 s 2.08 min 4.67 3.07 703.02
1024 100 835.48 s 13.92 min 6.69 4.94 3753.72
2048 10 6165.49 s | 102.76 min | 7.38 19.46 13128.69

4096 1 10431.07 s | 173.85 min | 1.69 - -

Table 7.2: Benchmark for generating valid distributed RSA keys locally. Ratio is
the current average divided by the previous average.

The range between minimum time and maximum time in the key generation
benchmarks is quite big for all key sizes and for both LAN and locally. This
is as expected because of the distribution of primes and the fact that both
p and ¢ must be prime at the same time, which increases the variance in
these results.

From [BF97] and [MWB99] it can be read that 1024-bit keys are generated in
approximately 90 seconds on much slower computers (clocked at 300 MHz).
The reasons are many, the algorithm can be optimized in many ways, see
Chapter 9 for more details. As a comparison, standard RSA protocols that
are implemented efficiently typically uses milliseconds to generate a 1024-bit
key on a standard desktop computer, whereas 4096-bit keys typically ranges
from milliseconds to hundreds of milliseconds.

The fact that the most time-consuming step in the distributed RSA protocol
is the key generation becomes clear from Table 7.3. The important thing to
notice here is that the steps for key generation, up to the step for generating
[, is very time consuming, and is conducted numerous times. On the other
hand, once some candidates p and ¢ have passed all the test up to the step
for checking v, the rest of the steps are only conducted 1 time. This means
that improvements on the run-time of the protocol should focus on the key
generation step, and not so much on the step for calculating the exponents
and doing decryption and signature.

7.3.3 Decryption

The benchmark results for decryption are shown in Table 7.4. Note that
these results will also be valid as signature benchmarks, because basically
the same code is executed.

The number of rounds for all key sizes is 20, which is enough to give a very
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Function name ‘ LAN ‘ Local ‘
generate_p 15049 | 13972
generate_q 15051 | 13970
trial_division_p 39997 | 37152
check_trial_division_p | 39997 | 37152
trial_division_q 39999 | 37137
check _trial division.q | 39999 | 37137
check n 6256 | 5812
primality_test_N 6256 | 5812
check_primality_test N | 6256 | 5812
generate_g 934 861
check_g 934 861
check_v 467 431
generate_z 1 1
check _z 1 1
generate_l 1 1
generate_d 1 1
check_decrypt 1 1

Table 7.3: The average number of times each of the functions in the implementa-
tion is run when generating a valid 1024-bit key (divided into the 4 steps for the
distributed RSA protocol).

LAN Local

# bits | Rounds | Avg. time | Ratio || Avg. time | Ratio
32 20 6.4 ms N/A 3.3 ms N/A
64 20 6.6 ms 1.03 3.4 ms 1.03
128 20 6.7 ms 1.02 3.4 ms 1.00
256 20 7.6 ms 1.15 4.1 ms 1.21
512 20 9.7 ms 1.28 5.0 ms 1.22
1024 20 20.2 ms 2.08 12.8 ms 2.56
2048 20 69.1 ms 3.42 53.2 ms 4.16
4096 20 560.7 ms 8.11 263.6 ms 4.95

Table 7.4: Benchmark results for decrypting a message once a valid key is found.
Ratio is the current average divided by the previous average.
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good estimate for this benchmark because the variance in each set of results
is very small. As can be seen, the times are measured in milliseconds, which
means that once the key is generated, both decryption and signature can be
used to more or less all possible scenarios by virtually not using any time at
all, even for large keys.

The ratio is increasing very slowly up to 1024 bits, using almost the same
amount of time for 32-bit keys as for 512-bit keys. Again, the first leap is
from 512 bits to 1024 bits, however this leap is not as big for decryption
as for key generation. One reason for the lesser leap is that doing decryp-
tion and signature code is conducted one time only in any case, while for
key generation the leap is affected by the accumulated value of many failed
tries. The ratio leaps further to 2048 bits and 4096 bits increase even a bit
more, but the overall time needed is fairly low for all key sizes. It can also
be seen that the time needed to locally compute decryption and signature is
about half the time needed over LAN, which is essentially the same as was
found for key generation.

The results from each benchmark can be found in the electronic appendix
along with a valid generated distributed 4096-bit RSA key for 3 players.
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Chapter

Conclusions

The main goal of this thesis was to understand the basic theory of multi-
party computations and implement a fully functional distributed RSA pro-
tocol using secure multiparty computations in VIFF. The theory of MPC
is covered in Chapter 2 and 3, with the main focus on additive secret shar-
ing, Shamir’s secret sharing, the three stages used in every MPC, MPC
adversaries and the two most basic mathematical operations used in MPC,
addition and multiplication. Next, a distributed RSA protocol has been suc-
cessfully implemented for three players in VIFF, which includes distributed
key generation, decryption and signature, which are the important features
of a distributed RSA protocol. The implemented protocol allows three play-
ers to generate and use a distributed RSA key of arbitrary size in a secure
manner.

A supplementary goal of this thesis was to benchmark the solution in order
to find ways to speed up the implementation. Benchmarks have shown that
generating keys sufficiently large for use in common scenarios, having at
least 1024 bits, varies from seconds to days, averaging from tens of minutes
to several hours, which indicates that the current implementation is best
suited for scenarios that allow the key to be generated in advance. The
benchmark results also show that once a key is generated, both the decryp-
tion and signature process can be conducted very fast even for large key sizes
and could be used to perform immediate tasks. Two run-time improvements
are implemented compared to the original protocol, the first at the step for
distributed trial division and the second at the step for local trial division
on the revealed N. The distributed trial division improvement is the more
important of the two when it comes to increasing the efficiency of the pro-
tocol because this step involves communication between the players, which
require much more time than local computations.
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Another supplementary goal of this thesis was to analyze the security of
the protocol. Two security weaknesses was found, both of which relates to
the way a random number is used to secure a revealed answer. Both weak-
nesses could possibly reveal the private key to any of the players. The first
weakness relates to the distributed trial division step, whereas the second
weakness is regarding the alternative step in the biprimality test. Methods
for avoiding both the weaknesses are described, and the distributed trial
division weakness is also repaired in the implemented protocol, a repair that
fixes the security weakness and speeds up the protocol at the same time.
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Chapter

Further Work

In this chapter, some suggestions for further work for the distributed RSA
VIFF implementation are presented. In general, many changes can be done
in order to enhance the efficiency of the implementation. These changes
have not been carried out in this thesis due to the lack of time. Most of the
proposed changes are inspired by [MWB99], where a lot of experimentation
has been conducted. Implementing some or all of these changes will defi-
nitely make the key generation process a lot faster, and therefore making it
more useful in any type of scenario.

e GMPY should be used to represent all the values in the VIFF program.
Using GMPY instead of standard Python integers on all values in the
program will greatly increase the efficiency of the protocol. Sigurd
Meldgaard from the VIFF Developer Team estimates a 10-20% speed
up in key generation with this rather simple fix alone.

o Apply distributed sieving to improve the distributed trial division step.
The players can pick their p; and ¢; in such a way that it is guaranteed
that > p; and > ¢; is not divisible by any prime less than a sieving
bound. The experimentation in [MWB99] reports on a 10-fold improve-
ment in running time for this step alone when generating a 1024-bit
key.

e Test several candidates in parallel by testing several values for p and ¢
simultaneously. The nature of MPC is not very efficient, given that the
players are waiting at several synchronization points to receive shares
from each other. By testing several candidates in parallel, each player
normally have some calculations that can be done for at least one of
the candidates, which decreases the idle time for each player, and thus
improving the efficiency of the protocol.
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e Perform parallel trial division on N, which is the idea of trying many

primes in each division conducted. The idea is that instead of checking
that N is not divisible by any prime number [B1, B2| for some bounds
B1 and B2, instead a more efficient check is to multiply several primes
from this range, a = p; - p2 - ... , and check that ged(a, N) = 1. If any
of the primes divide N, then ged(a, N) will not output 1, and the test
consequently fails.

Apply load balancing, which is the idea of balancing the calculations
done for each player. Recall that the protocol at several places let
a specific player do some calculation, such as the calculation of the
Jacobi symbol in the distributed biprimality test, which is always con-
ducted by player 1, or the trial decryption process which is always cal-
culated by player 3 in the implementation. The responsibility should
rotate between all players, such that player i does the calculations ev-
ery k time, where k is the total number of players. Applied together
with testing several candidates in parallel, makes the workload for each
player very uniform.

The step for calculating the private exponent d should be implemented
for arbitrary e’s, either using the method described in [BF97] or the
method described in [CGHO00]. This step will hardly affect the run-
time for generating a valid key, but will increase the security of the
protocol.
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Appendix

Electronic Appendix

A compressed zip-file is attached to this thesis and contains the following:

e The distributed RSA code implemented in VIFF for three players.

The references used for this thesis (articles only).

The benchmark results for both key generation and decryption. The
results are divided into two folders, LAN and Local, each having results
for all key sizes, 32 bits to 4096 bits.

A valid 4096-bit distributed RSA key for three players as a proof of
concept of the implemented protocol in VIFF.
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Appendix

Install VIF'F

This chapter will describe step by step how to install VIFF on a Windows
XP machine. An installation guide can also be found by choosing your pre-
ferred operating system from http://viff.dk/doc/index.html (although
some steps are missing at the time).

B.1 Download and Install all the Necessary Files

A number of programs and modules need to be downloaded and installed in
order to successfully run VIFF programs. The steps below needs to be done
in this particular order:

e From the web page http://python.org/download/ download and in-
stall Python version 2.5.4 for Windows (python-2.5.4.msi)

e Update the environment variable Path (see below).

e Download and install Twisted for Python 2.5, http://twistedmatrix.
com/trac/.

e Download and install GMPY from http://code.google.com/p/gmpy/
(press Show all to find GMPY for python 2.5).

e Download and install Win320penSSL for Windows (newest version)
at http://www.slproweb.com/products/Win320penSSL.html. If in-
stallation requires Visual C++ 2008 Redistributables, it can be found
at the same web page, and have to be installed before Win320penSSL.

e Download and install PyOpenSSL for Python 2.5, found at http:
//pyopenssl.sourceforge.net/.
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e Download and install Python for Windows extensions for Python 2.5,
found at http://sourceforge.net/project/showfiles.php?group_
id=78018&package_1id=79063.

e Download and install VIFF executable file from http://viff.dk/
#releases.

e Download and unpack the VIFF zip file from the same web page, copy
the apps folder into your viff folder.

The Windows PATH environment variable needs to be updated in order
to be able to execute Python code outside the Python folder itself. Follow
these steps to update the PATH environment variable in Windows XP.

Right-click on My Computer on the desktop and choose Properties from the
menu (Figure B.1).

Open
Explore

Scan using Spybot-Search&Destroy
Search, ..

Manage

Map Metwork Drive. ..
Disconneck Metwark, Drive. ..

Create Shorkouk
Delete
Rename

Properties

Figure B.1: First step to update Windows XP’s environment variable: Go to the
computers properties.

From there go to the Advanced tab and press the Environment Variables
button (Figure B.2).

Next, choose Path in the System Variables view and press the Edit button
(Figure B.3).

Lastly, input your Python install folder in the Variable Value text field,
remember to separate with ; from the last entry in the text field (Figure
B.4).
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System Properties 2 x|

Syztem Restore I Automatic pdates I Bemate |
General I Computer Mame I Hardware Advanced

Y'ou muzt be logged on az an Administrator bo make most of these changes.

~ Performance
Wizual effects, processor scheduling, memony usage, and virtual memary

Settings

 Uzer Profiles

Degklop zettings related to pour logon

P

Settings

 Startup and Recowveny

System startup, system failure, and debugging information

Settings |

Erwironment ¥ ariables | Error Reporting |

0k | Cancel | Apply |

Figure B.2: Second step to update Windows XP’s environment variable: Go to
the Environment Variables.

B.2 Run Test Application

To test if the installation is working, try to run the millionaire example
included in /viff/apps/ as follows:

e Start three Windows Command Prompts by pressing Start menu —— >
Run... and write cmd.

e Browse to your /apps/ folder, found in /Python25/lib/site-packages/Viff/apps/

e In the first window, execute the following command: python generate-
config-files.py -n 8 -t 1 localhost:9001 localhost:9002 localhost:9003.
The configuration files for three players are now created with a random
seed value.

e In the first window, execute the following command: python million-
aires.py —no-ssl player-3.ini.

e In the second window, execute the following command: python mil-
lionaires.py —no-ssl player-2.ini.
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System Properties 2=
Syztem Restore I Automatic Updates I Femote |

Environment Yariables 2x|

i~ User variables For Saturn

‘fariable | Walue
PATH C:\Program Files\OpentPRIbin
TEMP C\Documents and SettingsiAdministrat. .,
TMP C\Documents and SettingsiAdministrat. .,
Mew Edit | Delete |

—System variables

‘ariable | Yalue |ﬂ
OPENSSL_COMF  Z\Program Files\Opensslibintopenssl.cfg

0 windows_MT

Path C\Program Files\MikTex 2, Fymikkexdbing ..
PATHERT JCOM; EXE; BAT; . CMD; WBS; WBE;. 05, ..,
PROCESSOR_fi, .. 86 |

Mew | | Edit | Delete |
oK | Zancel | ]

Figure B.3: Third step to update Windows XP’s environment variable: Open the
System Variable Path.

e In the last window, execute the following command: python million-
aires.py —no-ssl player-1.ina.

You should now get the correct ranking of the three millionaires, but each
window should only reveal their own amount of money (Figure B.5, Figure
B.6 and Figure B.7).

The option of running protocols with SSL is also an option. This will re-
quire running the following command in any of the windows after running
the generate-config-files.py command: generate-certificates.py. This will au-
tomatically create certificates for three players.

In order to run the program on distinct computers, and not all players
locally on one computer, both the configuration files and the certificates
(if used) needs to be distributed to the other computers, and the Internet
Protocol (IP) addresses of all the computers must be types in when running
the configuration files command. So instead of writing the addresses as
localhost:port, the command would be IPaddress:port.
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Edit System ¥ariable d |

‘ariable name: I Path

Variable value: kTimel QT System!,; SLlmane e e

oK I Cancel

Figure B.4: Fourth step to update Windows XP’s environment variable: Append
a path for the System Variable.

I am Millionaire 1 and I am worth 48 millions.
From poorest to richest:

Millionaire 1 <48 millions>
Millionaire 3
Millionaire 2

Figure B.5: Player 1’s output when the test application finishes.

I am Millionaire 2 and I am worth 158 millions.
From poorest to richest:

Millionaire 1
Millionaire 3
Millionaire 2 €158 millions»

Figure B.6: Player 2’s output when the test application finishes.

I am Millionaire 3 and I am worth 134 millions.
From poorest to pichest:

Millionaire 1
Millionaire 3 €134 millions>
Millionaire 2

Figure B.7: Player 3’s output when the test application finishes.
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Appendix

Mathematics

C.1 Linear System Approach

Continuing from Section 3.6.1 the players can solve a linear system of equa-
tions. Each player can establish three equations using the formula as shown
in Equation (C.1).

fg(i,j) =Sij = Sp+ rJ + T‘2j2 (C.l)
In Equation (C.1) i refers to the player holding the share and j refers to the
player that created the share. Player 1 can do the following calculations:

f9(1,1) =s11=5

fg(lvz) =s512=—1

f9(1,3) =s13=—14
Organizing these values into a matrix yields:

S, Tr1 To )
Sh 27"1 47“2 -1
sy, 3r1 9o —14
Player 1 wants to solve the equations with respect to s, which is player 1’s

share of the total polynomial. Solving the linear system can be done using
Gaussian elimination [EP87] as shown below:

(1 11 5 Ry—1-Ry [1 11 5
1 2 4 -1 — 013 —6 Ry —2- Ry
—
1 3 9 —-14] R3—1-R; |0 8 —19
111 5 . 111 5
1 -6 5'2}33 0 1 —6
0 2 -7 0 1 —-35
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Going backwards from row three, all the unknown variables can be calcu-
lated:

7“2:—3.5
ri=—6-3-r=—6-3(=3.5) =45
spb=5—ri—ra=5—45—-(-35)=4

The value s;, = 4 can be located in Table 3.4. Player 2 and player 3 have to
use their values in order to calculate their value of sy,.

C.2 Vandermonde Matrix

Continuing from Section 3.6.1 the players do not need to solve the linear
system. By using the inverse of a Vandermonde matrix each player can ob-
tain its share of the total polynomial by means of a less complex calculation.
The Vandermonde matrix is defined as [Tur66]:

2 n—1
1 ¢ 2 - x )
2 n—
1 z9 x5 -+ X
2 n—
V=|1 z3 x5 --- x3
2 n—1
1 zp =, -

V is the Vandermonde matrix and I is the identity matrix, both of size 3x3.
For three players where 1 = 1, x93 = 2 and x3 = 3 the two matrices are
defined as follows:

111 1
V=11 2 4 I=10
1 3 9 0

O = O
= o O

Gauss-Jordan elimination is used to transform [V'|I] into [I|V ~1].

11 1100 Ry—1-Ry [1 1 1] 100
1 2 4(0 10 = 013/ -110
13 9(0 0 1 Ry—1-Ry [0 2 8/-1 0 1
11 1] 1 00 1R 11 1] 1 00

1 3/-1 10 2’ 1 3/-1 10
00 2] 1 -2 1 00 1] § -1 3
1 1 1] 1 0 0 R -1-R [1 00| 3 -3 1
01 -2 4 -3 = 1 0j-32 432
00 1] 5 -1 3| R—-1-Rg |00 1| 5 -1 3
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The tuple (3, —3,1) in the first row of the inverse Vandermonde matrix will
always contain these values when three players are participating and they
use the indexes 1, 2 and 3. This gives an advantage for solving the linear
systems since no computation on solving the unknown variables needs to be
done.

From Table 3.3 player 1 has received the tuple of share values (5, —1, —14)
from player 1, 2 and 3, respectively. In order for player 1 to find its share
on the total polynomial, the matrix multiplication of the two tuples is cal-
culated:

3 -3 1] - _—5114 = [15+3-14] = [4

The value 4 can be located in Table 3.4. Player 2 and player 3 will have to
calculate the Vandermonde tuple (3, —3, 1) with their own tuple from Table
3.3 in order to find their shares on the total polynomial.
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Appendix

VIFF Distributed RSA Code

#!/usr/bin/python

# Copyright 2007, 2008 VIFF Development Team.

#

# This file is part of VIFF, the Virtual Ideal Functionality
Framework .

#

# VIFF is free software: you can redistribute it and/or modify
it

# under the terms of the GNU Lesser General Public License (LGPL
) as

# published by the Free Software Foundation, either version 3 of
the

# License, or (at your option) any later version.

#

# VIFF is distributed in the hope that it will be useful, but
WITHOUT

# ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY

# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General

# Public License for more details.

#

# You should have received a copy of the GNU Lesser General
Public

# License along with VIFF. If not, see <http://www.gnu.org/

licenses />.

This code can be used to generate shared RSA keys of any
desired

length. The implementation is based on the algorithm described

in "Efficient Generation of Shared RSA keys” written by

# Dan Boneh and Matthew Franklin in 1997.

#

# Some adjustments have been made, the first one found in the

step

*H#H W
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# ”"Trial division”, which is specially implemented for 3 players

# although it can be be extended to arbitrary number of players.

# The second change is that the trial division for N is for a
larger

# span than used in the article and also that each player checks

# different spans instead of all players check the same ones.

#

# Give a player configuration file as a command line argument or
run

# the example with ’——help’ for help with the command line
options.

# import the necessary modules
import random

import math

import gmpy

import time

from optparse import OptionParser
from twisted.internet import reactor

from viff.field import GF

from viff.runtime import Runtime, create_runtime, gather_shares,
make_runtime_class, Share

from viff.comparison import ComparisonToft07Mixin, Toft05Runtime

from viff.config import load_config

from viff.util import rand, find_prime

from viff.equality import ProbabilisticEqualityMixin

# We start by defining the protocol, it will be started at the
bottom
# of the file.

class Protocol:

# returns the list of primes larger than min and less or
equal to max
def get_primes(self, min, max):
primes = []
while True:
prime = int (gmpy.next_prime (min))
if prime <= max:
primes += [prime]
min = prime
else:
return primes

# the function for generating a private part of p for each
player

def generate_p(self):
self.function_count [0] += 1
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# player 1 needs to obtain its share of p as congruent

to 3 mod 4
if self.runtime.id = 1:
self .p = 4xrandom.randint (1, self.numeric_length —
1) +3

# every other player needs to obtain its share of p as
congruent to 0 mod 4

else:
self .p = 4«random.randint (1, self.numeric_length —
1)
#print "my p = 7 + str(self.p)

self.trial_division_p ()

# the function for generating a private part of g for each
player , equal to the corresponding function for p

def generate_q(self):
self . function_count [1] 4= 1

if self.runtime.id = 1:
self.q = 4«random.randint (1, self.numeric_length —
1) + 3
else:

self.q = 4«random.randint (1, self.numeric_length —

1)

#print "my q = 7 + str(self.q)
self.trial_division_q ()

function for doing shared trial division for small primes
on the choosen p
alternative step to the step described in the article ,
with this solution nothing is revealed
check if p is composite for small primes (done secret
shared)
each player choose a random number from Zp and this number
along with its private p (mod the current prime number
to be tested)
def trial_division_p (self):
self.function_count [2] 4= 1
# the function is done iterative , therefore the next
prime to be checked needs to be choosen
prime_num = self.prime_list_bl[self.prime_pointer]
# calculate the remainder of self.p modulus the current
prime number in the list

* H#F ¥ F*

p-trial = self.p % prime_num

#print "my p_trial = 7 4+ str(p_trial) + 7 for prime_num
=7 4+ str(prime_num)

r_trial = random.randint (1, self.Zp.modulus — 1)

#print “my random r_trial = 7 4 str(r_trial)

# share the values

95




109

111

113

115

117

119

121

123

125

127

129

131

133

135

137

139

141

143

145

147

96 APPENDIX D. VIFF DISTRIBUTED RSA CODE

p-triall ; p_trial2 , p_trial3 = self.runtime.shamir_share
([1, 2, 3], self.Zp, p_trial)

p-r-triall , p_r_trial2, p_r_trial3 = self.runtime.
shamir_share ([1, 2, 3], self.Zp, r_trial)

# calculate the needed values

p-trial_tot = (p-triall + p_trial2 + p_trial3)

r_trial_tot = (p-r-triall 4+ p_r_trial2 + p_r_trial3)

# the value to reveal, p_trial_tot is the sum of each
players’ private p, r_trial_tot is the sum of a
random number from each player and prime_.num is the
current prime number to check

trial_reveal = p_trial_tot x (p_trial_tot — prime_.num) =x

(p-trial_tot — 2 % primenum) * r_trial_tot

# open the value of the open_trial_reveal share
open_trial_reveal = self.runtime.open(trial_reveal)
results = gather_shares ([open_trial_reveal])

# addCallback lets the program wait for the results to
be ready, then call the function given as the
argument

results.addCallback(self.check_trial_division_p)

# reveal—function that are called from trial_division_p ()
when the results are ready

# from the equation in trial_division_p () trial_reveal = p(p
— prime) (p — 2«prime)*r, if prime divides p, then surely
this expression will be zero for 3 players

# if prime does NOT divide p, then the result re_trial will
be nothing but a random number, and reveals no
information about the players’ private p

def check_trial_division_p(self, results):
self . function_count [3] +=1
rev_trial = results [0]. value
#print 7rev_trial = 7 4+ str(rev_trial)

# if prime divides p, generate a new p and start over
if rev_trial = 0:
self.prime_pointer = 0
#print "generating p again”
self.generate_p ()
# if not, check if more primes are to be tested, if yes,
go back to trial_division_p (), if no, generate q
else:
self.prime_pointer 4= 1
# if all the primes in the prime_list_bl is tested,
generate q
if self.prime_pointer >= len(self.prime_list_-b1l):
self.prime_pointer = 0
self.generate_q ()
# else, check for next prime in the list
else:
self.trial_division_p ()
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# this function is equal to the corresponding function for p
def trial_division_q (self):
self.function_count [4] 4= 1

prime_num = self.prime_list_bl[self.prime_pointer]

q-trial = self.q % prime_num

#print "my q-trial = 7 4+ str(q-trial) + 7 for prime_num
= 7 + str(prime_num)

r_trial = random.randint (1, self.Zp.modulus — 1)

#print "my random r_trial = 7 4+ str(r_trial)

q-triall ; q_trial2 , q_-trial3 = self.runtime.shamir_share

([1, 2, 3], self.Zp, q-trial)
q-r_triall , q-r_trial2 , q_r_trial3 = self.runtime.
shamir_share ([1, 2, 3], self.Zp, r_trial)

q-trial_tot = (q-triall + q_-trial2 + q_trial3)

r_trial_tot = (q.r_triall + gq_r_trial2 + gq_r_trial3)

trial_reveal = q-trial_tot % (q-trial_-tot — prime_num) x
(g-trial_tot — 2 % prime.num) % r_trial_tot

open_trial_-reveal = self.runtime.open(trial_-reveal)
results = gather_shares ([open_trial_reveal])
results.addCallback (self.check_trial_division_q)

# this function is equal to the corresponding function for p
until a q is accepted so far

def check_trial_division_q(self, results):
self . function_count [5] += 1

rev_trial = results [0]. value
#print "rev_trial = 7 4 str(rev_trial)
if rev_trial = 0:

self . prime_pointer = 0

#print ”generating q again”
self . generate_q ()
else:
self.prime_pointer 4= 1
# if all the primes in the prime_list_bl is tested,

reveal n
if self.prime_pointer >= len(self.prime_list_bl):
self .prime_pointer = 0

pl, p2, p3 = self.runtime.shamir_share ([1, 2,
3], self.Zp, self.p)

# calculate the total p as a share

self .ptot = (pl + p2 + p3)

ql, q2, g3 = self.runtime.shamir_share ([1, 2,
3], self.Zp, self.q)

# calculate the total q as a share

self.qtot = (ql+ q2 + q3)
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# calculate and open the RSA—modulus N
n = self.ptot * self.qtot
open_.n = self.runtime.open(n)

# FOR DEBUGGING ONLY
#open_ptot = self.runtime.open(self.ptot)

#open_qtot = self.runtime.open(self.qtot)
# END DEBUGGING ONLY

results = gather_shares ([open_-n]) #, open_ptot,
open_qtot]) # LAST TWO FOR DEBUGGING ONLY
results.addCallback (self.check_n)
# else , check for next prime in the list
else:
self.trial_division_q ()

# function to save the revealed N and the shared value of
phi, plus do useful debugging printouts

def check_n(self, results):
self . function_count [6] += 1

#print "n = 7 4+ str(results [0])

self .n_revealed = results [0]. value

self.phi = (self.ptot — 1) % (self.qtot — 1)

#print 7completed rounds: ” 4 str(self.completed_rounds)
+ 7/ 7 4 str(self.rounds)

#print ”\nn_revealed = 7 + str(self.n_revealed)

# FOR DEBUGGING ONLY
#print 7p_revealed = 7 + str(results [1]. value)
#print 7q.revealed = 7 + str(results [2].value)
# END DEBUGGING ONLY

#print 7#bits in N =7 + str(math. ceil (math.log(self.
n_revealed, 2)))

self.primality_test_N ()

# function for more primality testing on p and ¢
# the primality testing for N can be done very quickly
locally for each player since N is a revealed value
# each player checks N for different intervals (in
prime_list_b2) for program speed up
def primality_test_N(self):
self . function_count [7] += 1
# assume that the primality test will not fail
test_failed = 0
for i in self.prime_list_b2:
#print "N mod 7 + str(i) + 7 =7 4+ str(self.
n_revealed % i)
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# if the current prime in the list divides N, this
means that N has a factor equal to this prime,
since this factor is small (in comparison to the
value of p, q and N), this means that N is not
the product of two large primes p and q

if self.n_revealed % i — 0:

#print 7failed ... 7 4+ str(i) + 7 divides 7 4 str
(self.n_revealed)

test_failed =1

break

# share the values
failed1l , failed2 , failed3 = self.runtime.shamir_share
([1, 2, 3], self.Zp, test_failed)

# calculate and open the sum of failed wvalues
failed_tot = failedl + failed2 + failed3
open_failed_tot = self.runtime.open(failed_tot)

results = gather_shares ([open_failed_tot])
results.addCallback (self.check_primality_test_N)

# function for checking the primality test for N
def check_primality_test_N (self, results):
self.function_count [8] +=1

# if each player has checked through its whole list of
primes, but none divides N, p and q are so far
accepted

if results[0].value = O0:

#print ”primality test for N is OK, generate g”
self . generate_g ()

# if the results are not 0, then or or more of the
players have discovered a factor for N that is not p
or q, start the whole process from start with
generating p

else:

#print ”primality test for N failed , start
generating p”
self .generate_p ()

# function for agreeing on a random chosen g
def generate_g(self):
self . function_count [9] 4= 1
# player 1 chooses a random number in the interval [1, N
—1] and shares it with the other players

if self.runtime.id = 1:
self .g = random.randint (1, self.n_revealed — 1)
#print g = 7 4 str(self.g)
self.g = self.runtime.shamir_share ([1], self.Zp,
self.g)
else:
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# no input to the shamir share means that this
player has no value to share, but gets a value of
what is shared (by player 1)

self.g = self.runtime.shamir_share ([1], self.Zp)
self.open_g = self.runtime.open(self.g)
results = gather_shares ([self.open_g])

results.addCallback(self.check_g)

# function for distributed biprimality test, check that the
jacobi symbol of g is equal to 1, if yes, calculate v
def check_g(self, results):
self.function_count [10] += 1
#print 7g = 7 4+ str(results [0]. value)
self .g = results [0]. value
# calculate the jacobi symbol of (g/N)
jacobi = gmpy.jacobi(self.g, self.n_revealed) % self.
n_revealed
#print 7jacobi = 7 4+ str(jacobi)
# if the jacobi value is equal to 1, then calculate v
if jacobi = 1:
# calculate the v’s
if self.runtime.id = 1:
# calculate player 1’s private part of phi (N —
pl — ql + 1)
self.phi_i = self.n_revealed — self.p — self.q +
1
#self .v = self.gxx((self.n_revealed — self.p —
self.q + 1) / 4) % self.n_revealed
base = gmpy.mpz(self.g)
power = gmpy.mpz(self.phi_i / 4)
modulus = gmpy.mpz(self.n_revealed)
self .v = int (pow(base, power, modulus))
#self .v = self.powermod(self.g, (self.n_revealed
— self.p — self.q + 1) / 4, self.n_revealed)
else:
# calculate every other players
phi —(pi + qi) for player i
self .phi_i = —(self.p + self.q)
# the function gmpy.divm(1l, a, b) calculates the
inverse of a mod b
self.inverse_v = int (gmpy.divin(1, self.g, self.
n_revealed))

’ private part of

base = gmpy.mpz(self.inverse_v)
power = gmpy.mpz(—self.phi_i / 4)
modulus = gmpy.mpz(self.n_revealed)

self .v = int (pow(base, power, modulus))
#print 7self.phi_i = 7 + str(self.phi_i)
# if the jacobi value is not 1, then choose generate a
new g

else:
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self.generate_g ()

return

#print 7self.v =7 + str(self.v)

# share the v’s (already mod N)

vl, v2, v3 = self.runtime.shamir_share([1, 2, 3], self.
Zp, self.v)

# calculate the total v

v_tot = vl % v2 % v3

self.open_v = self.runtime.open(v_tot)

results = gather_shares ([self.open_v])

#print "GIKK GREIT MED GATHER SHARES”
results.addCallback (self.check_v)

# function for checking for a valid v

def check_v(self, results):
self.function_count[11] 4= 1
# the resulting v is also calculated mod N
v = results [0].value % self.n_revealed
#print v = 7 4+ str(v)

# if v is equal to 1/—1 mod N, go to the next step,
generating =z

if v=1 or v = self.n_revealed — 1:
self.generate_z ()

# else, the distributed biprimality test failed , start
all over with generating p

else:
self . prime_pointer = 0
self.generate_p ()

# function for the 4th step in the distributed biprimality
test —> the alternative step described

def generate_z(self):
self . function_count [12] += 1
# each player generate a random number

self . r_z = random.randint (1, self.n_revealed — 1)
# the random numbers are shared
rl, r2, r3 = self.runtime.shamir_share([1, 2, 3], self.

Zp, self.r_z)
z = (rl + 12 + 1r3) x (=1 + (self.ptot + self.qtot))

self .open_z = self.runtime.open(z)
results = gather_shares ([self.open_z])
results.addCallback (self.check_z)

# function for checking that gecd(z, N) is equal to 1
def check_z(self, results):
self.function_count[13] +=1
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z = results [0]. value % self.n_revealed
#print 7z = 7 4+ str(z)

# calculate the gcd of z and N
z.n = gmpy.gcd(z, self.n_revealed)
# if the gcd is equal to 1, then the distributed
biprimality test is passed
if z.n = 1:
#print "ged(z, N) = 1, start generating e,d”
# choosing the RSA public exponent e, a prime close
to a power of two is often chosen, 2716 + 1 =
65537 is very often used
self.e = 2xx16 + 1
#self.e = 17
#print 7e = 7 4+ str(self.e)
self.generate_1()
#self.generate_psi()

# else the distributed biprimality test has failed , and
the whole protocol is started again by generating new

p and q’s

else:
#print 7ged(z, N) I= 1, restart with generating p”
self.prime_pointer = 0

self.generate_p ()

# function for generating 1, used to finding the private
exponent d
# by arriving at this function p and q are found to be
primes, and only a shared d is needed
def generate_1(self):
self.function_count [14] 4= 1
# every player calculates his/her private phi_i mod e (
public exponent)
self.1 = self.phi_i % self.e
print ”\n\nPRIVATE VARIABLES”
print ”self.l =7 4+ str(self.l)
# share the 1’s and calculate the total 1
11, 12, 13 = self.runtime.shamir_share([1, 2, 3], self.
Zp, self.l)
l_tot =11 + 12 + 13

open_l_tot = self.runtime.open(l_tot)
results = gather_shares ([open_l_tot])
results.addCallback (self.generate_d)

# function for generating the private exponent d, each
player end up with a private part of the total d
def generate_d(self, results):
self.function_count [15] 4= 1
# calculate the total 1 mod e
l_tot = results [0].value % self.e
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#print 71_tot = 7 4 str(l_tot)

# check that total 1 is invertable mod e

try:
zeta = gmpy.divm (1, l_tot, self.e) # CHECK IF
INVERTABLE
except:
# if not invertable, the protocol needs to be
started all over
# not invertable often means badly chosen ’e’
print ”"not invertable mod e”
self.generate_p ()
#print 7zeta (inv) = 7 + str(zeta)

# calculate this player’s private d, rounded down, this
means it ’s not entirely correct, but corrected later

self.d = int( — (zetaxself.phi_i)/self.e)

print "self.p =7 str(self.p)

print "self.q = 7 + str(self.q)

print ”self.d 7 4 str(self.d)

print "N (public) = 7 4+ str(self.n_revealed)

print "Total bits in N = ” +str(math.log(self.n_revealed

»2))

+

”

# calculate this player’s ¢, which is used to correct
the d with a trial decryption

base = gmpy.mpz(self .m)

power = gmpy.mpz(self.e)

modulus = gmpy.mpz(self.n_revealed)

self.c = int (pow(base, power, modulus))

# the wanted value to calculate is this player’s c¢"di
mod N, but player 1’s ’d’ is negative, therefore find
the inverse of player 1’s ¢ mod N, and use that

instead
if self.runtime.id = 1:
self.c = gmpy.divim(1, self.c, self.n_revealed)
base = gmpy.mpz(self.c)
if self.runtime.id = 1:
power = gmpy.mpz(—self.d)
else:
power = gmpy.mpz(self.d)
modulus = gmpy.mpz(self.n_revealed)
# decrypt = ¢"di mod N
self.decrypt = int (pow(base, power, modulus))
#print ”7self.decrypt (c”di mod N) = 7 + str(self.decrypt
)

# each player share its c¢ = self.decrypt
cl, ¢2, ¢3 = self.runtime.shamir_share([1, 2, 3], self.
Zp, self.decrypt)

open_cl = self.runtime.open(cl)
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open_c2 = self.runtime.open(c2)
open_c3 = self.runtime.open(c3)
results = gather_shares ([open_cl, open_c2, open_c3])

results.addCallback (self.check_decrypt)

def check_decrypt(self, results):
self . function_count [16] += 1
# player 3 is responsible for the trial decryption,
mostly because player 1 has a negative d and that
means more calculations if player 1 is suppose to do

the task

if self.runtime.id = 3:
cl = results [0]. value
c2 = results [1]. value
c¢3 = results [2]. value

# the adjustment is at most n—1, for three players
this means max 2
for i in range(0,3):
# calculate the temp_decrypt
tmp_decrypt = ¢l % ¢c2 * ¢3 % self.n_revealed #
self .cxxself.r x cl * ¢2 % ¢c3 % self.
n_revealed
print "Decryption = 7 4+ str (tmp_decrypt)
# check if this value is the correct value
if (tmp.decrypt = self.m):
print ”d found, with +r = 7 + str (i)
# if it is, correct_decryptions is increased
self.correct_decryptions +=1

9

print ”"Correct decryptions: 7 + str(self.
correct_decryptions) + 7 / 7 + str(self.
rounds)
break
else:

# if not, player 3’s d is increased by 1 and
c3 is recalculated before the next
iteration of the for—loop is done

self.d 4=1

base = gmpy.mpz(self.c)

power = gmpy.mpz(self.d)

modulus = gmpy.mpz(self.n_revealed)

c3 = int (pow(base, power, modulus))

# time2 is set to calculate the total time for the
generation of this valid key

self.time2 = time.clock ()

# completed_rounds is increased in case of more rounds

self.completed_rounds += 1

print "Completed rounds: ” + str(self.completed_rounds)
+ 7/ 7 4 str(self.rounds)

# the time for finding the current key is saved in the
times variable

self.times += [self.time2 — self.timel]
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# check if all the key generation rounds are finished
if self.completed_-rounds = self.rounds:
# if so, print the datas from the generations
print ”\n\nBENCHMARKS FOR VALID KEY GENERATION”

print "times = 7 + str(self.times)

print "Average: ” + str(sum(self.times) / (self.
rounds))

print ”"Correct decryptions: 7 + str(self.
correct_decryptions) + 7 / 7 + str(self.rounds)

print ”\n”

for i in range(len(self.function_count)):
print str(self.function_count_names[i]) + 7: 7 +

str(self.function_count[i]) + 7, avg: 7 +

str(int (self.function_count[i] / self.rounds)

# test if the program is suppose to do
decryption_benchmark as well

if self.decrypt_-benchmark_active = True:
self .decrypt_benchmark ()
return
else:
# the protocol is finished , synchronize the
shutdown

self .runtime.shutdown ()
else:
# more key generation shall be done, reset the
parameters for a new round and start the protocol
again from generate_p ()

self . prime_pointer = 0
self.decrypt_tries = 0
self.timel = time. clock ()

self.generate_p ()

# function for benchmarking the decryption time for a wvalid
key

# the method is to choose a message 'm’, calculate the
cipher ¢ = m"e mod N, then find each player’s part of the
message mi = ¢"di mod N

def decrypt_benchmark(self):
# start the clock for time benchmark
self.decrypt_-timel = time.clock ()

# calculate this player’s cipher c
base = gmpy.mpz(self .m)

power = gmpy.mpz(self.e)

modulus = gmpy.mpz(self.n_revealed)
self.c = int (pow(base, power, modulus))

# since player 1’s d is negative, find the inverse
if self.runtime.id = 1:

self.c = gmpy.divim (1, self.c, self.n_revealed)
base = gmpy.mpz(self.c)
if self.runtime.id = 1:
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power = gmpy.mpz(—self.d)
else:
power = gmpy.mpz(self.d)

modulus = gmpy.mpz(self.n_revealed)
# calculate this player’s mi = ¢"di mod N
self.decrypt = int (pow(base, power, modulus))

# share the values
cl, ¢2, ¢3 = self.runtime.shamir_share([1, 2, 3], self.

Zp, self.decrypt)

# calculate the total ¢ and open

c_tot = cl % ¢c2 * c3
open_c_tot = self.runtime.open(c_tot)
results = gather_shares ([open_c_tot])

results.addCallback (self.check_decrypt_benchmark)

# function for checking the results from the decryption
benchmark
def check_decrypt_-benchmark(self, results):
# the offset of the total d is off by at most n—1,
iterate through all possible values
for i in range(0,3):
# calculate a tmp_decrypt

tmp_decrypt = results [0].value % self.n_revealed
# check if this is equal to the original message
if tmp_decrypt = self .m:

# if so, stop the clock

self.decrypt_-time2 = time.clock ()

# update the number of decrypt tries and save
the time used for the current decryption

self.decrypt_tries 4= 1

self.decrypt_-times += [self.decrypt_-time2 — self
.decrypt_timel]

#print 7correct decryption for m = 7 4+ str(self.
m

)

# check if more decryption benchmarks is suppose
to be done
if self.decrypt_tries < self.decrypt_rounds:
# if yes, update the original message to not
repeat decryption for the same message
m’ every time
self . m 4= 1
# go back to the decrypt_benchmark() for a
new round
self .decrypt_benchmark ()
return
else:
# print some useful output from the
benchmark
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print 7\n\nBENCHMARK FOR DECRYPTION”

print ”times = 7 4 str(self.decrypt_-times)

print ”average decrypt time = 7 + str (sum(
self .decrypt_times) / self.decrypt_-rounds
)

# the protocol is finished , synchronize the
shutdown

self .runtime.shutdown ()

return

# function for distributed decryption of an arbitrary
ciphertext

# the players needs to have a shared key for this function
to work

# each player calculates m_i and shares the values to obtain
the message M

def decryption(self, ciphertext):
# since player 1’s d is negative, find the inverse
if self.runtime.id = 1:

ciphertext = gmpy.divm (1, ciphertext, self.
n_revealed)

base = gmpy.mpz(ciphertext)

if self.runtime.id = 1:
power = gmpy.mpz(—self.d)
else:
power = gmpy.mpz(self.d)

modulus = gmpy.mpz(self.n_revealed)
m_i = int (pow(base, power, modulus))

ml, m2, m3 = self.runtime.shamir_share([1, 2, 3], self.
Zp, m_i)

m_tot = ml % m2 * m3

open_m_tot = self.runtime.open(m_tot)

results = gather_shares ([open_m_tot])
results.addCallback(self.check_decryption)

# function for revealing the plaintext from decrypting the

ciphertext
def check_decryption(self, results):
message = results [0].value % self.n_revealed
print ”\nDecryption of ciphertext yields M= " + str(
message )

# function for distributed signature of an arbitrary message

# the players needs to have a shared key for this function
to work

# signature is carried out by using the shared ’d’ to
encrypt a message
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# each player calculates c_i and shares the values to obtain
the signature C

def signature(self, message):
# since player 1’s d is negative, find the inverse

if self.runtime.id = 1:
message = gmpy.divimm (1, message, self.n_revealed)
base = gmpy.mpz( message)
if self.runtime.id = 1:
power = gmpy.mpz(—self.d)
else:

power = gmpy.mpz(self.d)

modulus = gmpy.mpz(self.n_revealed)
c_.i = int (pow(base, power, modulus))

cl, ¢2, ¢3 = self.runtime.shamir_share([1, 2, 3], self.
Zp, c_i)

c_tot = cl % ¢2 * c3

open_c_-tot = self.runtime.open(c_tot)

results = gather_shares ([open_c_tot])
results.addCallback(self.check_signature)

# function for revealing the calculated signature C of a
given message M
def check_signature(self, results):
signature = results [0].value % self.n_revealed
print ”"\nSignature for message M is C = 7 + str(
signature)

# function that starts the shared RSA protocol
def __init__(self, runtime):

# CHANGEABLE VARIABLES

#**********************

# rounds are the total number of rounds to be run for
benchmark

self.rounds =1

# set True to do decryption benchmark, False to drop
this benchmark

self.decrypt_benchmark_active = True
# The number of decryption rounds to be performed if
active

self.decrypt_rounds = 20

# the number of bits in N (meaning p and q are bits.N /
2 each)

self.bits.N = 64

# m is the message used to check for correct decryption
self .m = 2
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# the lower limit for primality testing, testing done
secret shared

self.boundl = 12

# the limits for primality testing of N, done locally
with different boundaries for each player

# more efficient to let player 1 check larger span,
statistically player 1 will fail most often

self .bound2_pl = 15000 # 12—15000 = 1749 primes

self.bound2_p2 = 17500 # 15000—17500 = 260 primes

self .bound2_p3 = 20000 # 17500—20000 = 253 primes

# VARIABLES NOT TO BE CHANGED

#*****************************

# timel and time2 is used to measure the total time of
generating a key

self.timel = time. clock ()

self .time2 = 0

# completed_rounds are used when running keygeneration
several times for benchmarking

self.completed_rounds = 0

# times are the times from each round in key generation

self.times = []

# correct_decryptions are used to sum up the total
number of correct decryptions when benchmarking key
generation

# if printout show that correct_decryptions is not equal
to the total number of rounds, the protocol is
flawed

self.correct_decryptions = 0

# decrypt_timel/2 is used to measure the time for
decryption benchmark

self.decrypt_-timel = 0

self .decrypt_-time2 = 0

# decrypt_times are the times from each round in the
decrypt benchmark

self .decrypt_times = []

#self .completed_decrypt = 0
# completed_decrypt is used to count the number of
decryptions done until now in decryption benchmark

self.decrypt_tries = 0

# Save the Runtime for later use
self .runtime = runtime

# bit_length is the number of bits in p and q (correct

for 3 players)
self.bit_length = int(self.bits.N / 2) — 2
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# numeric_length is

based on a certain number of bits and is

the used to generate a numeric value
divided by

4 because of the way p and q are choosen later

self.numeric_length

# prime_list_bl is
secret shared
self.prime_list_bl

= int ((2xxself.bit_length) / 4)
the list of primes that are checked

= self.get_primes (2, self.boundl)

# prime_list_b2 1is the
locally by each player,
for each player

if self.runtime.id = 1:

self.prime_list_b2 =
self.bound2_pl)

self . runtime.id = 2:

self .prime_list_b2 = self.get_primes(self.bound2_pl,
self.bound2_p2)

list of primes that are checked
and is therefore different

self.get_primes(self.boundl,

elif

else:
self .prime_list_b2 = self.get_primes(self.bound2_p2,
self.bound2_p3)

#print self.prime_list_bl
print ”length of list b2 = ” 4 str(len(self.
prime_list_b2))

# prime_pointer is used to point to the right prime
number in the list at all times

self.prime_pointer = 0

# list used for debugging how many times each function

is run

#

self.function_count =
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

self.function_count_names = [” generate.p”, "generate_q”,
"trial_division_p”, "check_trial_division_p”, ”
trial_division_q”, "check_trial_division_q”, ”"check_n
7, ?"primality_test_N”, "check_primality_test_ N”7, 6 7
generate_g”, ”"check_g”, "check_v”, ”generate_z”,
check_z”, ”"generate_1”, "generate_.d”, ”check_decrypt

"]

# 1 needs to be large enough to cope with all possible
numbers that appear in the program during execution
# if this value is too small, the values could wrap
around the value of Zp.modulus and give bogus outputs
int (self.bits_.N % 3.5)
runtime.options.security_parameter

”

1 =
k =

# For the comparison protocol to work, we need a field
modulus

# bigger than 2**(141) + 2**(l+k+1), where the bit
length of
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# the input numbers is | and k is the security parameter

# Further more, the prime must be a Blum prime (a prime
p such

# that p % 4 = 3 holds). The find_prime function lets
us find

# a suitable prime.

self .Zp = GF(find_prime (2xx(1 + 1) + 2*x(1 + k + 1),
blum=True))

#print self.Zp.modulus

# start the protocol by each player generating its own
private value for p
self.generate_p ()

# Parse command line arguments.
parser = OptionParser ()
Runtime.add_options (parser)
options, args = parser.parse_args ()

if len(args) =
parser.error
else:
id, players = load_config(args|[0])

0:
(?you must specify a config file”)

# Create a deferred Runtime and ask it to run our protocol when

ready .

#pre_runtime = create_runtime (id, players, 1, options,
Toft05Runtime)

runtime_class = make_runtime_class(mixins=[ComparisonToft07Mixin
1)

pre_runtime = create_runtime(id, players, 1, options,

runtime_class)
pre_runtime.addCallback (Protocol)

# Start the Twisted event loop.

reactor.run ()
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Appendix

GMPY

The General Multiprecision PYthon project focuses on Python-usable mod-
ules providing multiprecision arithmetic functionality to Python program-
mers. GMPY supports all kinds of mathematical functions, written in the
programming language C for optimization, in an easy-to-use fashion, and
GMPY has been used extensively throughout the implementation of dis-
tributed RSA in VIFF. For more information about GMPY see [GMPO03],
and for where to download GMPY see Appendix B.

All the functions used in the distributed RSA implementation will briefly
be described below.
E.1 find prime

The function next_prime(z) returns the smallest prime number > x and does
so in a really fast manner even for very large x’s. Note that this function
uses a probabilistic definition of prime.

E.2 jacobi

The function jacobi(z, y) returns the Jacobi symbol (g), and is used in the
distributed biprimality test.

E.3 pow

The standard power operator in Python, ** is not very optimized, and
takes from seconds to minutes to calculate typical large exponents like the
ones used in RSA. The function pow(a, b, ¢) returns the number a® mod
¢ in matter of milliseconds for arbitrary large numbers because it’s based
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on the exponentiation by squaring method (also called square-and-multiply
method).

E.4 divim

The function divm(a, b, m) returns z such that b-x = a mod m, therefore
being an easy way of finding modular inverses by setting a = 1.

E.5 gcd

The function gcd(a, b) returns the greatest common denominator of the
numbers a and b.
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